27 resultados para NONLINEAR SIGMA-MODELS
Resumo:
The majority of reported learning methods for Takagi-Sugeno-Kang fuzzy neural models to date mainly focus on the improvement of their accuracy. However, one of the key design requirements in building an interpretable fuzzy model is that each obtained rule consequent must match well with the system local behaviour when all the rules are aggregated to produce the overall system output. This is one of the distinctive characteristics from black-box models such as neural networks. Therefore, how to find a desirable set of fuzzy partitions and, hence, to identify the corresponding consequent models which can be directly explained in terms of system behaviour presents a critical step in fuzzy neural modelling. In this paper, a new learning approach considering both nonlinear parameters in the rule premises and linear parameters in the rule consequents is proposed. Unlike the conventional two-stage optimization procedure widely practised in the field where the two sets of parameters are optimized separately, the consequent parameters are transformed into a dependent set on the premise parameters, thereby enabling the introduction of a new integrated gradient descent learning approach. A new Jacobian matrix is thus proposed and efficiently computed to achieve a more accurate approximation of the cost function by using the second-order Levenberg-Marquardt optimization method. Several other interpretability issues about the fuzzy neural model are also discussed and integrated into this new learning approach. Numerical examples are presented to illustrate the resultant structure of the fuzzy neural models and the effectiveness of the proposed new algorithm, and compared with the results from some well-known methods.
Resumo:
Nonlinear interactions take place in most systems that arise in music acoustics, usually as a result of player-instrument coupling. Several time-stepping methods exist for the numerical simulation of such systems. These methods generally involve the discretization of the Newtonian description of the system. However, it is not always possible to prove the stability of the resulting algorithms, especially when dealing with systems where the underlying force is a non-analytic function of the phase space variables. On the other hand, if the discretization is carried out on the Hamiltonian description of the system, it is possible to prove the stability of the derived numerical schemes. This Hamiltonian approach is applied to a series of test models of single or multiple nonlinear collisions and the energetic properties of the derived schemes are discussed. After establishing that the schemes respect the principle of conservation of energy, a nonlinear single-reed model is formulated and coupled to a digital bore, in order to synthesize clarinet-like sounds.
Resumo:
This paper presents a physics based modelling procedure to predict the thermal damage of composite material when struck by lightning. The procedure uses the Finite Element Method with non-linear material models to represent the extreme thermal material behaviour of the composite material (carbon/epoxy) and an embedded copper mesh protection system. Simulation predictions are compared against published experimental data, illustrating the potential accuracy and computational cost of virtual lightning strike tests and the requirement for temperature dependent material modelling. The modelling procedure is then used to examine and explain a number of practical solutions to minimize thermal material damage. © 2013 Elsevier Ltd.
Resumo:
Abstract—Power capping is an essential function for efficient power budgeting and cost management on modern server systems. Contemporary server processors operate under power caps by using dynamic voltage and frequency scaling (DVFS). However, these processors are often deployed in non-uniform memory
access (NUMA) architectures, where thread allocation between cores may significantly affect performance and power consumption. This paper proposes a method which maximizes performance under power caps on NUMA systems by dynamically optimizing two knobs: DVFS and thread allocation. The method selects the optimal combination of the two knobs with models based on artificial neural network (ANN) that captures the nonlinear effect of thread allocation on performance. We implement
the proposed method as a runtime system and evaluate it with twelve multithreaded benchmarks on a real AMD Opteron based NUMA system. The evaluation results show that our method outperforms a naive technique optimizing only DVFS by up to
67.1%, under a power cap.
Resumo:
This paper presents an approach to compute transonic Limit Cycle O
scillations using a coupled Harmonic Balance formulation based on the Euler equations for fluid dynamics and finite element models. The paper will investigate the role of aerodynamic (shocks) and structural nonlinearities in driving the limit cycle behaviour. Part icular attention will be given to nonlinear interactions for subcritical LCOs. The Aero elastic Harmonic Balance formulation, allows for solutions of the coupled structural dynamics and CFD system at a reduced cost.
Resumo:
The test of modifications to quantum mechanics aimed at identifying the fundamental reasons behind the unobservability of quantum mechanical superpositions at the macroscale is a crucial goal of modern quantum mechanics. Within the context of collapse models, current proposals based on interferometric techniques for their falsification are far from the experimental state of the art. Here we discuss an alternative approach to the testing of quantum collapse models that, by bypassing the need for the preparation of quantum superposition states might help us addressing nonlinear stochastic mechanisms such as the one at the basis of the continuous spontaneous localization model.
Resumo:
The influence of nonlinear frequency coupling in an oxygen plasma excited by two odd harmonics at moderate pressure is investigated using a numerical model. Through variations in the voltage ratio and phase shift between the frequency components changes in ionization dynamics and sheath voltages are demonstrated. Furthermore, a regime in which the voltage drop across the plasma sheath is minimised is identified. This regime provides a significantly higher ion flux than a single frequency discharge driven by the lower of the two frequencies alone. These operating parameters have potential to be exploited for plasma processes requiring low ion bombardment energies but high ion fluxes.
Resumo:
A forward and backward least angle regression (LAR) algorithm is proposed to construct the nonlinear autoregressive model with exogenous inputs (NARX) that is widely used to describe a large class of nonlinear dynamic systems. The main objective of this paper is to improve model sparsity and generalization performance of the original forward LAR algorithm. This is achieved by introducing a replacement scheme using an additional backward LAR stage. The backward stage replaces insignificant model terms selected by forward LAR with more significant ones, leading to an improved model in terms of the model compactness and performance. A numerical example to construct four types of NARX models, namely polynomials, radial basis function (RBF) networks, neuro fuzzy and wavelet networks, is presented to illustrate the effectiveness of the proposed technique in comparison with some popular methods.
Resumo:
Clean and renewable energy generation and supply has drawn much attention worldwide in recent years, the proton exchange membrane (PEM) fuel cells and solar cells are among the most popular technologies. Accurately modeling the PEM fuel cells as well as solar cells is critical in their applications, and this involves the identification and optimization of model parameters. This is however challenging due to the highly nonlinear and complex nature of the models. In particular for PEM fuel cells, the model has to be optimized under different operation conditions, thus making the solution space extremely complex. In this paper, an improved and simplified teaching-learning based optimization algorithm (STLBO) is proposed to identify and optimize parameters for these two types of cell models. This is achieved by introducing an elite strategy to improve the quality of population and a local search is employed to further enhance the performance of the global best solution. To improve the diversity of the local search a chaotic map is also introduced. Compared with the basic TLBO, the structure of the proposed algorithm is much simplified and the searching ability is significantly enhanced. The performance of the proposed STLBO is firstly tested and verified on two low dimension decomposable problems and twelve large scale benchmark functions, then on the parameter identification of PEM fuel cell as well as solar cell models. Intensive experimental simulations show that the proposed STLBO exhibits excellent performance in terms of the accuracy and speed, in comparison with those reported in the literature.
Resumo:
In the last decade, many side channel attacks have been published in academic literature detailing how to efficiently extract secret keys by mounting various attacks, such as differential or correlation power analysis, on cryptosystems. Among the most efficient and widely utilized leakage models involved in these attacks are the Hamming weight and distance models which give a simple, yet effective, approximation of the power consumption for many real-world systems. These leakage models reflect the number of bits switching, which is assumed proportional to the power consumption. However, the actual power consumption changing in the circuits is unlikely to be directly of that form. We, therefore, propose a non-linear leakage model by mapping the existing leakage model via a transform function, by which the changing power consumption is depicted more precisely, hence the attack efficiency can be improved considerably. This has the advantage of utilising a non-linear power model while retaining the simplicity of the Hamming weight or distance models. A modified attack architecture is then suggested to yield the correct key efficiently in practice. Finally, an empirical comparison of the attack results is presented.
Resumo:
The accurate determination of non-linear shear behaviour and fracture toughness of continuous carbon-fibre/polymer composites remains a considerable challenge. These measurements are often necessary to generate material parameters for advanced computational damage models. In particular, there is a dearth of detailed shear fracture toughness characterisation for thermoplastic composites which are increasingly generating renewed interest within the aerospace and automotive sectors. In this work, carbon fibre (AS4)/ thermoplastic Polyetherketoneketone (PEKK) composite V-notched cross-ply specimens were manufactured to investigate their non-linear response under pure shear loading. Both monotonic and cyclic loading were applied to study the shear modulus degradation and progressive failure. For the first time in the reported literature, we use the essential work of fracture approach to measure the shear fracture toughness of continuous fibre reinforced composite laminates. Excellent geometric similarity in the load-displacement curves was observed for ligament-scaled specimens. The laminate fracture toughness was determined by linear regression, of the specific work of fracture values, to zero ligament thickness, and verified with computational models. The matrix intralaminar fracture toughness (ply level fracture toughness), associated with shear loading was determined by the area method. This paper also details the numerical implementation of a new three-dimensional phenomenological model for carbon fibre thermoplastic composites using the measured values, which is able to accurately represent the full non-linear mechanical response and fracture process. The constitutive model includes a new non-linear shear profile, shear modulus degradation and load reversal. It is combined with a smeared crack model for representing ply-level damage initiation and propagation. The model is shown to accurately predict the constitutive response in terms of permanent plastic strain, degraded modulus as well as load reversal. Predictions are also shown to compare favourably with the evolution of damage leading to final fracture.
Resumo:
A novel surrogate model is proposed in lieu of Computational Fluid Dynamics (CFD) solvers, for fast nonlinear aerodynamic and aeroelastic modeling. A nonlinear function is identified on selected interpolation points by
a discrete empirical interpolation method (DEIM). The flow field is then reconstructed using a least square approximation of the flow modes extracted
by proper orthogonal decomposition (POD). The aeroelastic reduce order
model (ROM) is completed by introducing a nonlinear mapping function
between displacements and the DEIM points. The proposed model is investigated to predict the aerodynamic forces due to forced motions using
a N ACA 0012 airfoil undergoing a prescribed pitching oscillation. To investigate aeroelastic problems at transonic conditions, a pitch/plunge airfoil
and a cropped delta wing aeroelastic models are built using linear structural models. The presence of shock-waves triggers the appearance of limit
cycle oscillations (LCO), which the model is able to predict. For all cases
tested, the new ROM shows the ability to replicate the nonlinear aerodynamic forces, structural displacements and reconstruct the complete flow
field with sufficient accuracy at a fraction of the cost of full order CFD
model.