17 resultados para NON-ISOTHERMAL CRYSTALLIZATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A near-isothermal micro-trickle bed reactor operated under radio frequency heating was developed. The reactor bed was packed with nickel ferrite micro-particles of 110. μm diameter, generating heat by the application of RF field at 180. kHz. Hydrodynamics in a co-current configuration was analysed and heat transfer rates were determined at temperature ranging from 55 to 100. °C. A multi-zone reactor bed of several heating and catalytic zones was proposed in order to achieve near-isothermal operations. Exact positioning, number of the heating zones and length of the heating zones composed of a mixture of nickel ferrite and a catalyst were determined by solving a one dimensional model of heat transfer by conduction and convection. The conductive losses contributed up to 30% in the total thermal losses from the reactor. Three heating zones were required to obtain an isothermal length of 50. mm with a temperature non-uniformity of 2. K. A good agreement between the modelling and experimental results was obtained for temperature profiles of the reactor. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Diagnosis of meningococcal disease relies on recognition of clinical signs and symptoms that are notoriously non-specific, variable, and often absent in the early stages of the disease. Loop-mediated isothermal amplification (LAMP) has previously been shown to be fast and effective for the molecular detection of meningococcal DNA in clinical specimens. We aimed to assess the diagnostic accuracy of meningococcal LAMP as a near-patient test in the emergency department.

Methods: For this observational cohort study of diagnostic accuracy, children aged 0-13 years presenting to the emergency department of the Royal Belfast Hospital for Sick Children (Belfast, UK) with suspected meningococcal disease were eligible for inclusion. Patients underwent a standard meningococcal pack of investigations testing for meningococcal disease. Respiratory (nasopharyngeal swab) and blood specimens were collected from patients and tested with near-patient meningococcal LAMP and the results were compared with those obtained by reference laboratory tests (culture and PCR of blood and cerebrospinal fluid).

Findings: Between Nov 1, 2009, and Jan 31, 2012, 161 eligible children presenting at the hospital underwent the meningococcal pack of investigations and were tested for meningococcal disease, of whom 148 consented and were enrolled in the study. Combined testing of respiratory and blood specimens with use of LAMP was accurate (sensitivity 89% [95% CI 72-96], specificity 100% [97-100], positive predictive value 100% [85-100]; negative predictive value 98% [93-99]) and diagnostically useful (positive likelihood ratio 213 [95% CI 13-infinity] and negative likelihood ratio 0·11 [0·04-0·32]). The median time required for near-patient testing from sample to result was 1 h 26 min (IQR 1 h 20 min-1 h 32 min).

Interpretation: Meningococcal LAMP is straightforward enough for use in any hospital with basic laboratory facilities, and near-patient testing with this method is both feasible and effective. By contrast with existing UK National Institute of Health and Care Excellence guidelines, we showed that molecular testing of non-invasive respiratory specimens from children is diagnostically accurate and clinically useful.