28 resultados para NF-YA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretory leucoprotease inhibitor (SLPI) is a nonglycosylated protein produced by epithelial cells. In addition to its antiprotease activity, SLPI has been shown to exhibit antiinflammatory properties, including down-regulation of tumor necrosis factor alpha expression by lipopolysaccharide (LPS) in macrophages and inhibition of nuclear factor (NF)-kappaB activation in a rat model of acute lung injury. We have previously shown that SLPI can inhibit LPS-induced NF-kappaB activation in monocytic cells by inhibiting degradation of IkappaBalpha without affecting the LPS-induced phosphorylation and ubiquitination of IkappaBalpha. Here, we present evidence to show that upon incubation with peripheral blood monocytes (PBMs) and the U937 monocytic cell line, SLPI enters the cells, becoming rapidly localized to the cytoplasm and nucleus, and affects NF-kappaB activation by binding directly to NF-kappaB binding sites in a site-specific manner. SLPI can also prevent p65 interaction with the NF-kappaB consensus region at concentrations commensurate with the physiological nuclear levels of SLPI and p65. We also demonstrate the presence of SLPI in nuclear fractions of PBMs and alveolar macrophages from individuals with cystic fibrosis and community-acquired pneumonia. Therefore, SLPI inhibition of NF-kappaB activation is mediated, in part, by competitive binding to the NF-kappaB consensus-binding site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BRCA1 mediates resistance to apoptosis in response to DNA-damaging agents, causing BRCA1 wild-type tumours to be significantly more resistant to DNA damage than their mutant counterparts. In this study, we demonstrate that following treatment with the DNA-damaging agents, etoposide or camptothecin, BRCA1 is required for the activation of nuclear factor-?B (NF-?B), and that BRCA1 and NF-?B cooperate to regulate the expression of the NF-?B antiapoptotic targets BCL2 and XIAP. We show that BRCA1 and the NF-?B subunit p65/RelA associate constitutively, whereas the p50 NF-?B subunit associates with BRCA1 only upon DNA damage treatment. Consistent with this BRCA1 and p65 are present constitutively on the promoters of BCL2 and XIAP, whereas p50 is recruited to these promoters only in damage treated cells. Importantly, we demonstrate that the recruitment of p50 onto the promoters of BCL2 and XIAP is dependent upon BRCA1, but independent of its NF-?B partner subunit p65. The functional relevance of NF-?B activation by BRCA1 in response to etoposide and camptothecin is demonstrated by the significantly reduced survival of BRCA1 wild-type cells upon NF-?B inhibition. This study identifies a novel BRCA1-p50 complex, and demonstrates for the first time that NF-?B is required for BRCA1-mediated resistance to DNA damage. It reveals a functional interdependence between BRCA1 and NF-?B, further elucidating the role played by NF-?B in mediating cellular resistance of BRCA1 wild-type tumours to DNA-damaging agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Klebsiella pneumoniae is etiologic agent of community-acquired and nosocomial pneumonia. It has been shown that K. pneumoniae infections are characterized by reduced early inflammatory response. Recently our group have shown that K. pneumoniae dampens the activation of inflammatory responses by antagonizing the activation of the NF-κB canonical pathway. Our results revealed that K. pneumoniae capsule (CPS) was necessary but not sufficient to attenuate inflammation. To identify additional Klebsiella factors required to dampen inflammation, we standardized and applied a high-throughput gain-on-function screen to examine a Klebsiella transposon mutant library. We identified 114 mutants that triggered the activation of NF-κB. Two gene ontology categories accounted for half of the loci identified in the screening, that of metabolism and transport (32% of the mutants), and of enveloperelated genes (17%). Characterization of the mutants revealed that the lack of the enterobactin siderophore was linked to a reduced CPS expression which in turn underlined the NF- κB activation induced by the mutant. The lipopolysaccharide (LPS) O-polysaccharide and the pullulanase (PulA) type 2 secretion system (T2SS) are required for full effectiveness of immune evasion. Importantly, these factors do not play a redundant role. The fact that LPS Opolysaccharide and T2SS mutants-induced responses were dependent on TLR2-TLR4- MyD88 activation suggested that LPS Opolysaccharide and PulA perturbed TLRdependent recognition of K. pneumoniae. Finally, we demonstrate that LPS O-polysaccharide and pulA mutants are attenuated in the pneumonia mouse model. We propose that LPS Opolysaccharide and PulA T2SS could be new targets for designing new antimicrobials. Increasing TLR-governed defence responses might provide also selective alternatives for the management of K. pneumoniae pneumonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cystic fibrosis (CF) is a lifelong, inflammatory multi-organ disease and the most common lethal, genetic condition in Caucasian populations, with a median survival rate of 41.5 years. Pulmonary disease, characterized by infective exacerbations, bronchiectasis and increasing airway insufficiency is the most serious manifestation of this disease process, currently responsible for over 80% of CF deaths. Chronic dysregulation of the innate immune and host inflammatory response has been proposed as a mechanism central to this genetic condition, primarily driven by the nuclear factor κB (NF-κB) pathway. Chronic activation of this transcription factor complex leads to the production of pro-inflammatory cytokines and mediators such as IL-6, IL-8 and TNF-α. A20 has been described as a central and inducible negative regulator of NF-κB. This intracellular molecule negatively regulates NF-κB-driven pro-inflammatory signalling upon toll-like receptor activation at the level of TRAF6 activation. Silencing of A20 increases cellular levels of p65 and induces a pro-inflammatory state. We have previously shown that A20 expression positively correlates with lung function (FEV1%) in CF. Despite improvement in survival rates in recent years, advancements in available therapies have been incremental. We demonstrate that the experimental use of naturally occurring plant diterpenes such as gibberellin on lipopolysaccharide-stimulated cell lines reduces IL-8 release in an A20-dependent manner. We discuss how the use of a novel bio-informatics gene expression connectivity-mapping technique to identify small molecule compounds that similarly mimic the action of A20 may lead to the development of new therapeutic approaches capable of reducing chronic airway inflammation in CF. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mullerian inhibiting substance (MIS), a member of the transforming growth factor-β superfamily, induces regression of the Mullerian duct in male embryos. In this report, we demonstrate MIS type II receptor expression in normal breast tissue and in human breast cancer cell lines, breast fibroadenoma, and ductal adenocarcinomas. MIS inhibited the growth of both estrogen receptor (ER)-positive T47D and ER-negative MDA-MB-231 breast cancer cell lines, suggesting a broader range of target tissues for MIS action. Inhibition of growth was manifested by an increase in the fraction of cells in the G1 phase of the cell cycle and induction of apoptosis. Treatment of breast cancer cells with MIS activated the NFκB pathway and selectively up-regulated the immediate early gene IEX-1S, which, when overexpressed, inhibited breast cancer cell growth. Dominant negative IκBα expression ablated both MIS-mediated induction of IEX-1S and inhibition of growth, indicating that activation of the NFκB signaling pathway was required for these processes. These results identify the NFκB-mediated signaling pathway and a target gene for MIS action and suggest a putative role for the MIS ligand and its downstream interactors in the treatment of ER-positive as well as negative breast cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear factor kappa B (NF-kappaB) activation has been proposed as a cardinal feature of tumourigenesis, although the precise mechanism, frequency, relevance, and extent of NF-kappaB activation in lymphomas remain to be fully elucidated. In this study, expression profiling and tissue microarray studies of 209 and 323 non-Hodgkin's lymphomas (NHLs) respectively, including the most frequent sub-types of NHL, were employed to generate a hypothesis concerning the most common NF-kappaB targets in NHL. These analyses showed that NF-kappaB activation is a common phenomenon in NHL, resulting in the expression of distinct sets of NF-kappaB target genes, depending on the cell context. BCL2 and BIRC5/Survivin were identified as key NF-kappaB targets and their expression distinguished small and aggressive B-cell lymphomas, respectively. Interestingly, in the vast majority of B-cell lymphomas, the expression of these markers was mutually exclusive. A set of genes was identified whose expression correlates either with BIRC5/Survivin or with BCL2. BIRC5/Survivin expression, in contrast to BCL2, was associated with a signature of cell proliferation (overexpression of cell cycle control, DNA repair, and polymerase genes), which may contribute to the aggressive phenotype and poor prognosis of these lymphomas. Strikingly, mantle cell lymphoma and chronic lymphocytic leukaemia expressed highly elevated levels of BCL2 protein and mRNA, higher than that observed in reactive mantle zone cells or even in follicular lymphomas, where BCL2 expression is deregulated through the t(14;18) translocation. In parallel with this observation, BIRC5/Survivin expression was higher in Burkitt's lymphoma and diffuse large B-cell lymphoma than in non-tumoural germinal centre cells. In vitro studies confirmed that NF-kappaB activation contributes to the expression of both markers. In cell lines representing aggressive lymphomas, NF-kappaB inhibition resulted in a decrease in BIRC5/Survivin expression. Meanwhile, in chronic lymphocytic leukaemia (CLL)-derived lymphocytes, NF-kappaB inhibition resulted in a marked decrease in BCL2 expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated protein C (APC) protects against sepsis in animal models and inhibits the lipopolysacharide (LPS)-induced elaboration of proinflammatory cytokines from monocytes. The molecular mechanism responsible for this property is unknown. We assessed the effect of APC on LPS-induced tumour necrosis factor alpha (TNF-alpha) production and on the activation of the central proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) in a THP-1 cell line. Cells were preincubated with varying concentrations of APC (200 microg/ml, 100 microg/ml and 20 microg/ml) before addition of LPS (100 ng/ml and 10 microg/ml). APC inhibited LPS-induced production of TNF-alpha both in the presence and absence of fetal calf serum (FCS), although the effect was less marked with 10% FCS. APC also inhibited LPS-induced activation of NF-kappaB, with APC (200 microg/ml) abolishing the effect of LPS (100 ng/ml). The ability of APC to inhibit LPS-induced translocation of NF-kappaB is likely to be a significant event given the critical role of the latter in the host inflammatory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Triple negative (TNBCs) and the closely related Basal-like (BLBCs) breast cancers are a loosely defined collection of cancers with poor clinical outcomes. Both show strong similarities with BRCA1-mutant breast cancers and BRCA1 dysfunction, or 'BRCAness', is observed in a large proportion of sporadic BLBCs. BRCA1 expression and function has been shown in vitro to modulate responses to radiation and chemotherapy. Exploitation of this knowledge in the treatment of BRCA1-mutant patients has had varying degrees of success. This reflects the significant problem of accurately detecting those patients with BRCA1 dysfunction. Moreover, not all BRCA1 mutations/loss of function result in the same histology/pathology or indeed have similar effects in modulating therapeutic responses. Given the poor clinical outcomes and lack of targeted therapy for these subtypes, a better understanding of the biology underlying these diseases is required in order to develop novel therapeutic strategies.We have discovered a consistent NFκB hyperactivity associated with BRCA1 dysfunction as a consequence of increased Reactive Oxygen Species (ROS). This biology is found in a subset of BRCA1-mutant and triple negative breast cancer cases and confers good outcome. The increased NFκB signalling results in an anti-tumour microenvironment which may allow CD8+ cytotoxic T cells to suppress tumour progression. However, tumours lacking this NFκB-driven biology have a more tumour-promoting environment and so are associated with poorer prognosis. Tumour-derived gene expression data and cell line models imply that these tumours may benefit from alternative treatment strategies such as reprogramming the microenvironment and targeting the IGF and AR signalling pathways.