52 resultados para NEUTRON RADIOGRAPHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of local anisotropy in the bulk, isotropic, and ionic liquid phases-leading to local mesoscopic inhomogeneity-with nanoscale segregation and expanding nonpolar domains on increasing the length of the cation alkyl-substituents has been proposed on the basis of molecular dynamics (MD) simulations. However, there has been little conclusive experimental evidence for the existence of intermediate mesoscopic structure between the first/second shell correlations shown by neutron scattering on short chain length based materials and the mesophase structure of the long chain length ionic liquid crystals. Herein, small angle neutron scattering measurements have been performed on selectively H/D-isotopically substituted 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids with butyl, hexyl, and octyl substituents. The data show the unambiguous existence of a diffraction peak in the low-Q region for all three liquids which moves to longer distances (lower Q), sharpens, and increases in intensity with increasing length of the alkyl substituent. It is notable, however, that this peak occurs at lower values of Q (longer length scale) than predicted in any of the previously published MD simulations of ionic liquids, and that the magnitude of the scattering from this peak is comparable with that from the remainder of the amorphous ionic liquid. This strongly suggests that the peak arises from the second coordination shells of the ions along the vector of alkyl-chain substituents as a consequence of increasing the anisotropy of the cation, and that there is little or no long-range correlated nanostructure in these ionic liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we report on the radiography of a shock-compressed target using laser produced proton beams. A low-density carbon foam target was shock compressed by long pulse high-energy laser beams. The shock front was transversally probed with a proton beam produced in the interaction of a high intensity laser beam with a gold foil. We show that from radiography data, the density profile in the shocked target can be deduced using Monte Carlo simulations. By changing the delay between long and short pulse beams, we could probe different plasma conditions and structures, demonstrating that the details of the steep density gradient can be resolved. This technique is validated as a diagnostic for the investigation of warm dense plasmas, allowing an in situ characterization of high-density contrasted plasmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proton radiography using laser-driven sources has been developed as a diagnostic since the beginning of the decade, and applied successfully to a range of experimental situations. Multi-MeV protons driven from thin foils via the Target Normal Sheath Acceleration mechanism, offer, under optimal conditions, the possibility of probing laser-plasma interactions, and detecting electric and magnetic fields as well as plasma density gradients with similar to ps temporal resolution and similar to 5-10 mu m spatial resolution. In view of these advantages, the use of proton radiography as a diagnostic in experiments of relevance to Inertial Confinement Fusion is currently considered in the main fusion laboratories. This paper will discuss recent advances in the application of laser-driven radiography to experiments of relevance to Inertial Confinement Fusion. In particular we will discuss radiography of hohlraum and gasbag targets following the interaction of intense ns pulses. These experiments were carried out at the HELEN laser facility at AWE (UK), and proved the suitability of this diagnostic for studying, with unprecedented detail, laser-plasma interaction mechanisms of high relevance to Inertial Confinement Fusion. Non-linear solitary structures of relevance to space physics, namely phase space electron holes, have also been highlighted by the measurements. These measurements are discussed and compared to existing models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K alpha radiation generated by interaction of an ultrashort (1 ps) laser with thin (25 mu m) Ti foils at high intensity (2x10(16) W/cm(2)) is analyzed using data from a spherical Bragg crystal imager and a single hit charge-coupled device spectrometer together with Monte Carlo simulations of K alpha brightness. Laser to K alpha and electron conversion efficiencies have been determined. We have also measured an effective crystal reflectivity of 3.75 +/- 2%. Comparison of imager data with data from the relatively broadband single hit spectrometer has revealed a reduction in crystal collection efficiency for high K alpha yield. This is attributed to a shift in the K-shell spectrum due to Ti ionization. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that short pulse laser generated Ti K alpha radiation can be used effectively as a backlighter for radiographic imaging. This method of x-ray radiography features high temporal and spatial resolution, high signal to noise ratio, and monochromatic imaging. We present here the Ti K alpha backlit images of six-beam driven spherical implosions of thin-walled 500-mu m Cu-doped deuterated plastic (CD) shells and of similar implosions with an included hollow gold cone. These radiographic results were used to define conditions for the diagnosis of fast ignition relevant electron transport within imploded Cu-doped coned CD shells. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

beta-D-glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate in a 6 : 1 molar ratio (ionic liquid : glucose) has been studied by neutron scattering, NMR and molecular dynamics simulations. Good agreement was found between simulated neutron scattering profiles generated for isotopically substituted liquid systems and those experimentally determined as well as between simulated and experimental diffusion coefficients obtained by Pulsed Field Gradient NMR spectroscopy. The overriding glucose-ionic liquid interactions in the liquid are hydrogen-bonding between acetate oxygens and sugar hydroxyl groups. The ionic liquid cation was found to play only a minor role in the solvation of the sugar and does not participate in hydrogen-bonding with the sugar to any significant degree. NOESY experiments lend further evidence that there is no direct interaction between sugar hydroxyl groups and acidic hydrogens on the ionic liquid cation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small angle neutron scattering (SANS) has been applied to examine the effect of high pressure CO2 on the structure of Wyodak coal. Significant decrease in the scattering intensities upon exposure of the coal to high pressure CO2 showed that high pressure CO2 rapidly adsorbs on the coal and reaches to all pores in the structure. This is confirmed by strong and steep exothermic peaks observed on DSC scans during coal/ CO2 interactions. In situ small angle neutron scattering on coal at high pressure CO2 atmosphere showed an increase in scattering intensities with time suggesting that after adsorption, high pressure CO2 immediately begins to diffuse into the coal matrix, changes the macromolecular structure of the coal, swells the matrix and probably creates microporosity in coal structure by extraction of volatile components from coal. Significant decrease in the glass transition temperature of coal caused by high pressure CO2 also confirms that CO2 at elevated pressures dissolve in the coal matrix, results in significant plasticization and physical rearrangement of the coal’s macromolecular structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporal development of laser driven single mode perturbations in thin A1 foils has been measured using extreme ultraviolet (XUV) laser radiography. 15, 30, 70 and 90 mu m single modes were imprinted on 2 mu m thick A1 foils with an optical driver laser at 527 nm for intensities in the range 5 x 10(12) to 1.5 x 10(13) W cm(-2). The magnitude of the imprinted perturbation at the time of shock break out was determined by fitting to the data estimated curves of growth of the Rayleigh-Taylor instability after shock break out. The efficiency of imprinting is independent of perturbation wavelength in the parameter range of this experiment, suggesting little influence of thermal conduction smoothing. The results are of interest for directly driven inertially confined fusion. (C) 1998 American Institute of Physics.