56 resultados para Multi-agent Systems
Resumo:
Multi-vehicle cooperative formation control problem is an important and typical topic of research on multi-agent system. This paper presents a formation stability conjecture to conceive a new methodology for solving the decentralised multi-vehicle formation control problem. It employs the “extension-decomposition-aggregation” scheme to transform the complex multi-agent control problem into a group of sub-problems which is able to be solved conveniently. Based on this methodology, it is proved that if all the individual augmented subsystems can be stabilised by using any approach, the overall formation system is not only asymptotically but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. Simulation study on 6-DOF aerial vehicles (Aerosonde UAVs) has been performed to verify the achieved formation stability result. The proposed multi-vehicle formation control strategy can be conveniently extended to other cooperative control problems of multi-agent systems.
Resumo:
In a team of multiple agents, the pursuance of a common goal is a defining characteristic. Since agents may have different capabilities, and effects of actions may be uncertain, a common goal can generally only be achieved through a careful cooperation between the different agents. In this work, we propose a novel two-stage planner that combines online planning at both team level and individual level through a subgoal delegation scheme. The proposal brings the advantages of online planning approaches to the multi-agent setting. A number of modifications are made to a classical UCT approximate algorithm to (i) adapt it to the application domains considered, (ii) reduce the branching factor in the underlying search process, and (iii) effectively manage uncertain information of action effects by using information fusion mechanisms. The proposed online multi-agent planner reduces the cost of planning and decreases the temporal cost of reaching a goal, while significantly increasing the chance of success of achieving the common goal.
Resumo:
A Fourier transform infrared gas-phase method is described herein and capable of deriving the vapour pressure of each pure component of a poorly volatile mixture and determining the relative vapour phase composition for each system. The performance of the present method has been validated using two standards (naphthalene and ferrocene), and a Raoult’s plot surface of a ternary system is reported as proof-of-principle. This technique is ideal for studying solutions comprising two, three, or more organic compounds dissolved in ionic liquids as they have no measurable vapour pressures.
Resumo:
In a multiagent system where norms are used to regulate the actions agents ought to execute, some agents may decide not to abide by the norms if this can benefit them. Norm enforcement mechanisms are designed to counteract these benefits and thus the motives for not abiding by the norms. In this work we propose a distributed mechanism through which agents in the multiagent system that do not abide by the norms can be ostracised by their peers. An ostracised agent cannot interact anymore and looses all benefits from future interactions. We describe a model for multiagent systems structured as networks of agents, and a behavioural model for the agents in such systems. Furthermore, we provide analytical results which show that there exists an upper bound to the number of potential norm violations when all the agents exhibit certain behaviours. We also provide experimental results showing that both stricter enforcement behaviours and larger percentage of agents exhibiting these behaviours reduce the number of norm violations, and that the network topology influences the number of norm violations. These experiments have been executed under varying scenarios with different values for the number of agents, percentage of enforcers, percentage of violators, network topology, and agent behaviours. Finally, we give examples of applications where the enforcement techniques we provide could be used.
Resumo:
Norms constitute a powerful coordination mechanism among heterogeneous agents. In this paper, we propose a rule language to specify and explicitly manage the normative positions of agents (permissions, prohibitions and obligations), with which distinct deontic notions and their relationships can be captured. Our rule-based formalism includes constraints for more expressiveness and precision and allows to supplement (and implement) electronic institutions with norms. We also show how some normative aspects are given computational interpretation. © 2008 Springer Science+Business Media, LLC.
Resumo:
In this paper, we present a hybrid BDI-PGM framework, in which PGMs (Probabilistic Graphical Models) are incorporated into a BDI (belief-desire-intention) architecture. This work is motivated by the need to address the scalability and noisy sensing issues in SCADA (Supervisory Control And Data Acquisition) systems. Our approach uses the incorporated PGMs to model the uncertainty reasoning and decision making processes of agents situated in a stochastic environment. In particular, we use Bayesian networks to reason about an agent’s beliefs about the environment based on its sensory observations, and select optimal plans according to the utilities of actions defined in influence diagrams. This approach takes the advantage of the scalability of the BDI architecture and the uncertainty reasoning capability of PGMs. We present a prototype of the proposed approach using a transit scenario to validate its effectiveness.
Resumo:
Threat prevention with limited security resources is a challenging problem. An optimal strategy is to eectively predict attackers' targets (or goals) based on current available information, and use such predictions to prevent (or disrupt) their planned attacks. In this paper, we propose a game-theoretic framework to address this challenge which encompasses the following three elements. First, we design a method to analyze an attacker's types in order to determine the most plausible type of an attacker. Second, we propose an approach to predict possible targets of an attack and the course of actions that the attackers may take even when the attackers' types are ambiguous. Third, a game-theoretic based strategy is developed to determine the best protection actions for defenders (security resources).
Resumo:
Boolean games are a framework for reasoning about the rational behavior of agents whose goals are formalized using propositional formulas. Compared to normal form games, a well-studied and related game framework, Boolean games allow for an intuitive and more compact representation of the agents’ goals. So far, Boolean games have been mainly studied in the literature from the Knowledge Representation perspective, and less attention has been paid on the algorithmic issues underlying the computation of solution concepts. Although some suggestions for solving specific classes of Boolean games have been made in the literature, there is currently no work available on the practical performance. In this paper, we propose the first technique to solve general Boolean games that does not require an exponential translation to normal-form games. Our method is based on disjunctive answer set programming and computes solutions (equilibria) of arbitrary Boolean games. It can be applied to a wide variety of solution concepts, and can naturally deal with extensions of Boolean games such as constraints and costs. We present detailed experimental results in which we compare the proposed method against a number of existing methods for solving specific classes of Boolean games, as well as adaptations of methods that were initially designed for normal-form games. We found that the heuristic methods that do not require all payoff matrix entries performed well for smaller Boolean games, while our ASP based technique is faster when the problem instances have a higher number of agents or action variables.
Resumo:
In this research note, we introduce a graded BDI agent development framework, g-BDI for short, that allows to build agents as multi-context systems that reason about three fundamental and graded mental attitudes (i.e. beliefs, desires and intentions). We propose a sound and complete logical framework for them and some logical extensions to accommodate slightly different views on desires. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Focusing on the uplink, where mobile users (each with a single transmit antenna) communicate with a base station with multiple antennas, we treat multiple users as antennas to enable spatial multiplexing across users. Introducing distributed closed-loop spatial multiplexing with threshold-based user selection, we propose two uplink channel-assigning strategies with limited feedback. We prove that the proposed system also outperforms the standard greedy scheme with respect to the degree of fairness, measured by the variance of the time averaged throughput. For uplink multi-antenna systems, we show that the proposed scheduling is a better choice than the greedy scheme in terms of the average BER, feedback complexity, and fairness. The numerical results corroborate our findings
Resumo:
The BDI architecture, where agents are modelled based on their beliefs, desires and intentions, provides a practical approach to develop large scale systems. However, it is not well suited to model complex Supervisory Control And Data Acquisition (SCADA) systems pervaded by uncertainty. In this paper we address this issue by extending the operational semantics of Can(Plan) into Can(Plan)+. We start by modelling the beliefs of an agent as a set of epistemic states where each state, possibly using a different representation, models part of the agent's beliefs. These epistemic states are stratified to make them commensurable and to reason about the uncertain beliefs of the agent. The syntax and semantics of a BDI agent are extended accordingly and we identify fragments with computationally efficient semantics. Finally, we examine how primitive actions are affected by uncertainty and we define an appropriate form of lookahead planning.
Resumo:
Multiuser selection scheduling concept has been recently proposed in the literature in order to increase the multiuser diversity gain and overcome the significant feedback requirements for the opportunistic scheduling schemes. The main idea is that reducing the feedback overhead saves per-user power that could potentially be added for the data transmission. In this work, the authors propose to integrate the principle of multiuser selection and the proportional fair scheduling scheme. This is aimed especially at power-limited, multi-device systems in non-identically distributed fading channels. For the performance analysis, they derive closed-form expressions for the outage probabilities and the average system rate of the delay-sensitive and the delay-tolerant systems, respectively, and compare them with the full feedback multiuser diversity schemes. The discrete rate region is analytically presented, where the maximum average system rate can be obtained by properly choosing the number of partial devices. They optimise jointly the number of partial devices and the per-device power saving in order to maximise the average system rate under the power requirement. Through the authors’ results, they finally demonstrate that the proposed scheme leveraging the saved feedback power to add for the data transmission can outperform the full feedback multiuser diversity, in non-identical Rayleigh fading of devices’ channels.