23 resultados para Multi objective optimizations (MOO)
Resumo:
Background: SPARCLE is a cross-sectional survey in nine European regions, examining the relationship of the environment of children with cerebral palsy to their participation and quality of life. The objective of this report is to assess data quality, in particular heterogeneity between regions, family and item non-response and potential for bias. Methods: 1,174 children aged 8–12 years were selected from eight population-based registers of children with cerebral palsy; one further centre recruited 75 children from multiple sources. Families were visited by trained researchers who administered psychometric questionnaires. Logistic regression was used to assess factors related to family non-response and self-completion of questionnaires by children. Results: 431/1,174 (37%) families identified from registers did not respond: 146 (12%) were not traced; of the 1,028 traced families, 250 (24%) declined to participate and 35 (3%) were not approached. Families whose disabled children could walk unaided were more likely to decline to participate. 818 children entered the study of which 500 (61%) self-reported their quality of life; children with low IQ, seizures or inability to walk were less likely to self-report. There was substantial heterogeneity between regions in response rates and socio-demographic characteristics of families but not in age or gender of children. Item non-response was 2% for children and ranged from 0.4% to 5% for questionnaires completed by parents. Conclusion: While the proportion of untraced families was higher than in similar surveys, the refusal rate was comparable. To reduce bias, all analyses should allow for region, walking ability, age and socio-demographic characteristics. The 75 children in the region without a population based register are unlikely to introduce bias
Resumo:
The performance of a multi-band antenna consisting of a microstrip patch with two U-slots is designed and tested for use in aircraft cabin wireless access points. The objective of this paper is to evaluate this antenna that covers most of the current wireless bands from 1.7GHz to 5.85GHz.A specially designed wideband probe antenna is used for characterization
of field radiated from this antenna. This measurement setup gives room for future development like human presence in the cabin, the fading effects, and the path loss between transmitter and receiver.
Resumo:
This paper investigates the construction of linear-in-the-parameters (LITP) models for multi-output regression problems. Most existing stepwise forward algorithms choose the regressor terms one by one, each time maximizing the model error reduction ratio. The drawback is that such procedures cannot guarantee a sparse model, especially under highly noisy learning conditions. The main objective of this paper is to improve the sparsity and generalization capability of a model for multi-output regression problems, while reducing the computational complexity. This is achieved by proposing a novel multi-output two-stage locally regularized model construction (MTLRMC) method using the extreme learning machine (ELM). In this new algorithm, the nonlinear parameters in each term, such as the width of the Gaussian function and the power of a polynomial term, are firstly determined by the ELM. An initial multi-output LITP model is then generated according to the termination criteria in the first stage. The significance of each selected regressor is checked and the insignificant ones are replaced at the second stage. The proposed method can produce an optimized compact model by using the regularized parameters. Further, to reduce the computational complexity, a proper regression context is used to allow fast implementation of the proposed method. Simulation results confirm the effectiveness of the proposed technique. © 2013 Elsevier B.V.
Resumo:
Traditionally, the optimization of a turbomachinery engine casing for tip clearance has involved either twodimensional transient thermomechanical simulations or three-dimensional mechanical simulations. This paper illustrates that three-dimensional transient whole-engine thermomechanical simulations can be used within tip clearance optimizations and that the efficiency of such optimizations can be improved when a multifidelity surrogate modeling approach is employed. These simulations are employed in conjunction with a rotor suboptimization using surrogate models of rotor-dynamics performance, stress, mass and transient displacements, and an engine parameterization.
Resumo:
BACKGROUND AND OBJECTIVE: Human research ethics committees provide essential review of research projects to ensure the ethical conduct of human research. Several recent reports have highlighted a complex process for successful application for human research ethics committee approval, particularly for multi-centre studies. Limited resources are available for the execution of human clinical research in Australia and around the world.
METHODS: This report overviews the process of ethics approval for a National Health and Medical Research Council-funded multi-centre study in Australia, focussing on the time and resource implications of such applications in 2007 and 2008.
RESULTS: Applications were submitted to 16 hospital and two university human research ethics committees. The total time to gain final approval from each committee ranged between 13 and 77 days (median = 46 days); the entire process took 16 months to complete and the research officer's time was estimated to cost $A34 143.
CONCLUSIONS: Obstacles to timely human research ethics committee approval are reviewed, including recent, planned and potential initiatives that could improve the ethics approval of multi-centre research.
Resumo:
The proposed multi-table lookup architecture provides SDN-based, high-performance packet classification in an OpenFlow v1.1+ SDN switch. The objective of the demonstration is to show the functionality of the architecture deployed on the NetFPGA SUME Platform.
Resumo:
OBJECTIVE: To demonstrate the benefit of complexity metrics such as the modulation complexity score (MCS) and monitor units (MUs) in multi-institutional audits of volumetric-modulated arc therapy (VMAT) delivery.
METHODS: 39 VMAT treatment plans were analysed using MCS and MU. A virtual phantom planning exercise was planned and independently measured using the PTW Octavius(®) phantom and seven29(®) 2D array (PTW-Freiburg GmbH, Freiburg, Germany). MCS and MU were compared with the median gamma index pass rates (2%/2 and 3%/3 mm) and plan quality. The treatment planning systems (TPS) were grouped by VMAT modelling being specifically designed for the linear accelerator manufacturer's own treatment delivery system (Type 1) or independent of vendor for VMAT delivery (Type 2). Differences in plan complexity (MCS and MU) between TPS types were compared.
RESULTS: For Varian(®) linear accelerators (Varian(®) Medical Systems, Inc., Palo Alto, CA), MCS and MU were significantly correlated with gamma pass rates. Type 2 TPS created poorer quality, more complex plans with significantly higher MUs and MCS than Type 1 TPS. Plan quality was significantly correlated with MU for Type 2 plans. A statistically significant correlation was observed between MU and MCS for all plans (R = -0.84, p < 0.01).
CONCLUSION: MU and MCS have a role in assessing plan complexity in audits along with plan quality metrics. Plan complexity metrics give some indication of plan deliverability but should be analysed with plan quality.
ADVANCES IN KNOWLEDGE: Complexity metrics were investigated for a national rotational audit involving 34 institutions and they showed value. The metrics found that more complex plans were created for planning systems which were independent of vendor for VMAT delivery.
Resumo:
Person re-identification involves recognizing a person across non-overlapping camera views, with different pose, illumination, and camera characteristics. We propose to tackle this problem by training a deep convolutional network to represent a person’s appearance as a low-dimensional feature vector that is invariant to common appearance variations encountered in the re-identification problem. Specifically, a Siamese-network architecture is used to train a feature extraction network using pairs of similar and dissimilar images. We show that use of a novel multi-task learning objective is crucial for regularizing the network parameters in order to prevent over-fitting due to the small size the training dataset. We complement the verification task, which is at the heart of re-identification, by training the network to jointly perform verification, identification, and to recognise attributes related to the clothing and pose of the person in each image. Additionally, we show that our proposed approach performs well even in the challenging cross-dataset scenario, which may better reflect real-world expected performance.