26 resultados para Mount Saint-Hilaire
Resumo:
Knowledge of groundwater flow/mass transport, in poorly productive aquifers which underlie over 65% of the island of Ireland, is necessary for effective management of catchment water quality and aquatic ecology. This research focuses on a fractured low-grade Ordovician/Silurian greywacke sequence which underlies approximately 25% of the northern half of Ireland. Knowledge of the unit’s hydrogeological properties remain largely restricted to localised single well open hole “transmissivity” values. Current hydrogeological conceptual models of the Greywacke view the bulk of groundwater flowing through fractures in an otherwise impermeable bedrock mass.
Core analysis permits fracture characterisation, although not all identified fractures may be involved in groundwater flow. Traditional in-situ hydraulic characterisation relies on cumbersome techniques such as packer testing or geophysical borehole logging (e.g. flowmeters). Queen’s University Belfast is currently carrying out hydraulic characterization of 16 boreholes at its Greywacke Hydrogeological Research Site at Mount Stewart, Northern Ireland.
Development of dye dilution methods, using a recently-developed downhole fluorometer, provided a portable, user-friendly, and inexpensive means of detecting hydraulically active intervals in open boreholes. Measurements in a 55m deep hole, three days following fluorescent dye injection, demonstrated the ability of the technique to detect two discrete hydraulically active intervals corresponding to zones identified by caliper and heat-pulse flowmeter logs. High resolution acoustic televiewer logs revealed the zones to correspond to two steeply dipping fractured intervals. Results suggest the rock can have effective porosities of the order of 0.1%.
Study findings demonstrate dye dilution’s utility in characterizing groundwater flow in fractured aquifers. Tests on remaining holes will be completed at different times following injection to identify less permeable fractures and develop an improved understanding of the structural controls on groundwater flow in the uppermost metres of competent bedrock.
Resumo:
Weathering-rind thicknesses on pebble-and cobble-size sediment have been used for the past half-century, at least, as an age indicator of postdepositional time following a geologic event. In mountainous terrain, rind thickness is taken as a measurement of weathering over time frames of 0.5 m.yr.; variable thicknesses are used to discriminate relative ages of glacial deposits. The effects of chemical and physical weathering that together produce rinds are only rarely considered, and most research objectives have centered on lichen alteration of clast surfaces. Recent microscopic analyses of weathering rinds on volcanic clasts of similar to 70.0-ka to similar to 2.0-m.yr. age produced new data on weathering products as well as unexpected incorporated biotic materials undergoing diagenesis. The question as to how much physical/mineral/chemical/ biotic paleoenvironmental data might be archived in rinds is discussed. The character and classification of organic materials undergoing diagenesis are also discussed.
Resumo:
The likelihood of smallholder farmers not participating in agroforestry agri-environmental schemes and payments for ecosystem services (PES) may be due to limited farmland endowment and formal credit constraints. These deficits may lead to an ‘exclusive club’ of successful farmers, which are not necessarily poor, enjoying the benefits of agri-environmental schemes and PES although agrienvironmental schemes and PES have been devised as a means of fostering rural sustainable development and improving the livelihood of poor smallholder farmers. Smallholder farmers in parts of rural Kenya continue to enroll in ‘The International Small Group Tree Planting Programme’ (TIST), an agri-environmental scheme, promoting agroforestry, carbon sequestration and conservation agriculture (CA). The question remains if these farmers are really poor? This study examines factors that determine the participation of smallholder farmers in TIST in parts of rural Kenya. We use survey data compiled in 2013 on 210 randomly selected smallholder farmers from Embu, Meru and Nanyuki communities; the sample consists of TIST and non-TIST members. A random utility model and logit regression were used to test a set of non-monetary and monetary factors that influence participation in the TIST. The utility function is conceptualized to give non-monetary factors, particularly the common medium of communication in rural areas – formal and informal – a central role. Furthermore, we investigate other factors (incl. credit accessibility and interest rate) that reveal the nature of farmers participating in TIST. The findings suggest that spread of information via formal and informal networks is a major driver of participation in the TIST program. Furthermore, variables such credit constrains, age and labour supply positively correlate with TIST participation, while for education the opposite is true. It is important to mention that these correlations, although somewhat consistent, were all found to be weak. The results indicate that participation in the TIST program is not influenced by farm size; therefore we argue that the TIST scheme is NOT an ‘exclusive club’ comprising wealthy and successful farmers. Older farmers’ being more likely to join the TIST is an argument for their long- rather than widely assumed short-term planning horizon and a new contribution to the literature. Given the importance of poverty alleviation and climate smart agriculture in developing countries, sustainable policy should strengthening the social and human capital as well as informal networks in rural areas. Extension services should effectively communicate benefits to less educated and credit constrained farmers.
Resumo:
Rock rinds have been used for half a century to date glacial deposits and recently inroads have been developed to use nuclides to provide absolute ages of weathering rinds in pebble clasts. Although maximum and minimum rind thicknesses have helped to elucidate time since deposition and allowed stratigraphic division of deposits at glacial rank, little has been done to investigate the wealth of mineral degradation, growth of alteration products and biomineralization that occur in these weathered crusts. In some cases the mass of microbe-mineral intergrowth is nearly present on a 50%/50% basis, with the biotic mass intergrown with mineral matter to such an extent that it probably controls pH and redox phenomena that act as accelerators in the weathering process. Assuming weathering time spans of 2 × 106 years or more for a complete cycle, eventual clast decomposition is the end product. Here we present evidence of microbe-clast intergrowth from selected sites of Pleistocene age (~70 ka to 2.0 Ma) in the lower Afroalpine of Mt. Kenya and hypothesize about its role in rock decomposition and fossilization of biotic end-members. © 2013 Copyright Taylor and Francis Group, LLC.