74 resultados para Motor equivalence
Resumo:
One can partially eliminate motor skills acquired through practice in the hours immediately following practice by applying repetitive transcranial stimulation (rTMS) over the primary motor cortex. The disruption of acquired levels of performance has been demonstrated on tasks that are ballistic in nature. The authors investigated whether motor recall on a discrete aiming task is degraded following a disruption of the primary motor cortex induced via rTMS. Participants (N = 16) maintained acquired performance levels and patterns of muscle activity following the application of rTMS. despite a reduction in corticospinal excitability. Disruption of the primary motor cortex during a consolidation period did not influence the retention of acquired skill in this type of discrete visuomotor task.
Resumo:
Okadaic acid (OA) and structurally related toxins dinophysistoxin-1 (DTX-1), and DTX-2, are lipophilic marine biotoxins. The current reference method for the analysis of these toxins is the mouse bioassay (MBA). This method is under increasing criticism both from an ethical point of view and because of its limited sensitivity and specificity. Alternative replacement methods must be rapid, robust, cost effective, specific and sensitive. Although published immuno-based detection techniques have good sensitivities, they are restricted in their use because of their inability to: (i) detect all of the OA toxins that contribute to contamination; and (ii) factor in the relative toxicities of each contaminant. Monoclonal antibodies (MAbs) were produced to OA and an automated biosensor screening assay developed and compared with ELISA techniques. The screening assay was designed to increase the probability of identifying a MAb capable of detecting all OA toxins. The result was the generation of a unique MAb which not only cross-reacted with both DTX-1 and DTX-2 but had a cross-reactivity profile in buffer that reflected exactly the intrinsic toxic potency of the OA group of toxins. Preliminary matrix studies reflected these results. This antibody is an excellent candidate for the development of a range of functional immunochemical-based detection assays for this group of toxins.
Resumo:
As a consequence of the fragility of various neural structures, preterm infants born at a low gestation and/or birthweight are at an increased risk of developing motor abnormalities. The lack of a reliable means of assessing motor integrity prevents early therapeutic intervention. In this paper, we propose a new method of assessing neonatal motor performance, namely the recording and subsequent analysis of intraoral sucking pressures generated when feeding nutritively. By measuring the infant's control of sucking in terms of a new development of tau theory, normal patterns of intraoral motor control were established for term infants. Using this same measure, the present study revealed irregularities in sucking control of preterm infants. When these findings were compared to a physiotherapist's assessment six months later, the preterm infants who sucked irregularly were found to be delayed in their motor development. Perhaps a goal-directed behaviour such as sucking control that can be measured objectively at a very young age, could be included as part of the neurological assessment of the preterm infant. More accurate classification of a preterm infant's movement abnormalities would allow for early therapeutic interventions to be realised when the infant is still acquiring the most basic of motor functions. (C) Springer-Verlag 2000.
Resumo:
The authors investigated how different levels of detail (LODs) of a virtual throwing action can influence a handball goalkeeper's motor response. Goalkeepers attempted to stop a virtual ball emanating from five different graphical LODs of the same virtual throwing action. The five levels of detail were: a textured reference level (L0), a non-textured level (L1), a wire-frame level (L2), a point-light-display (PLD) representation (L3) and a PLD level with reduced ball size (L4). For each motor response made by the goalkeeper we measured and analyzed the time to respond (TTR), the percentage of successful motor responses, the distance between the ball and the closest limb (when the stopping motion was incorrect) and the kinematics of the motion. Results showed that TTR, percentage of successful motor responses and distance with the closest limb were not significantly different for any of the five different graphical LODs. However the kinematics of the motion revealed that the trajectory of the stopping limb was significantly different when comparing the L1 and L3 levels, and when comparing the L1 and L4 levels. These differences in the control of the goalkeeper's actions suggests that the different level of information available in the PLD representations ( L3 and L4) are causing the goalkeeper to adopt different motor strategies to control the approach of their limb to stop the ball.