19 resultados para Motor development
Resumo:
Background: The majority of research examining the influence of social environment on early child development suggests benefits to two-parent households, but contradictory evidence for the effects of siblings. The aims of the present study were to examine the influence of the child's proximal social environment, and the effects of interactions between socioeconomic status and social environment on developmental outcomes.
Methods: Primary caregivers of a representative sample of 10,748 nine-month-old infants in Ireland completed the Ages and Stages Questionnaire and provided information on social environment. Adjustment was made for infant and maternal characteristics, household income, and area where the child was living at the time of the study. Further analyses tested for interactions between social environment and household income.
Results: Binary logistic regressions indicated no effects for number of parents in the household. However, the presence of siblings in the household was a consistent predictor of failing to reach milestones in communication, gross motor, problem-solving, and personal-social development. Furthermore, there was a gradient of increasing likelihood of failing in gross motor, problem-solving, and personal-social development with increasing numbers of siblings. Care by a grandparent decreased the likelihood of failing in communication and personal-social development.
Conclusions:These findings do not support the majority of research that finds positive benefits for two-parent households. Similarly, the findings suggest limited effects for non-parental care. However, the observed negative effects of siblings support both the confluence and resource dilution models of sibling effect. Examination of follow-up data may elucidate current findings.
Resumo:
Research in the field of sports performance is constantly developing new technology to help extract meaningful data to aid in understanding in a multitude of areas such as improving technical or motor performance. Video playback has previously been extensively used for exploring anticipatory behaviour. However, when using such systems, perception is not active. This loses key information that only emerges from the dynamics of the action unfolding over time and the active perception of the observer. Virtual reality (VR) may be used to overcome such issues. This paper presents the architecture and initial implementation of a novel VR cricket simulator, utilising state of the art motion capture technology (21 Vicon cameras capturing kinematic profile of elite bowlers) and emerging VR technology (Intersense IS-900 tracking combined with Qualisys Motion capture cameras with visual display via Sony Head Mounted Display HMZ-T1), applied in a cricket scenario to examine varying components of decision and action for cricket batters. This provided an experience with a high level of presence allowing for a real-time egocentric view-point to be presented to participants. Cyclical user-testing was carried out, utilisng both qualitative and quantitative approaches, with users reporting a positive experience in use of the system.
Resumo:
Background A developing body of evidence has provided valuable insight into the experiences of caregivers of people with motor neuron disease; however, understandings of how best to support caregivers remain limited.
Aim This study sought to understand concepts related to the motor neuron disease caregiver experience which could inform the development of supportive interventions.
Design A qualitative thematic analysis of a one-off semistructured interview with caregivers was undertaken.
Setting/participants Caregivers of people with motor neuron disease were recruited from a progressive neurological diseases clinic in Melbourne, Australia.
Results 15 caregivers participated. Three key themes were identified: (1) The Thief: the experience of loss and grief across varied facets of life; (2) The Labyrinth: finding ways to address ever changing challenges as the disease progressed; (3) Defying fate: being resilient and hopeful as caregivers tried to make the most of the time remaining.
Conclusions Caregivers are in need of more guidance and support to cope with experiences of loss and to adapt to changeable care giving duties associated with disease progression. Therapeutic interventions which target these experiences of loss and change are worth investigation.
Resumo:
The organizational and architectural configuration of white matter pathways connecting brain regions has ramifications for all facets of the human condition, including manifestations of incipient neurodegeneration. Although diffusion tensor imaging (DTI) has been used extensively to visualize white matter connectivity, due to the widespread presence of crossing fibres, the lateral projections of the corpus callosum are not normally detected using this methodology. Detailed knowledge of the transcallosal connectivity of the human cortical motor network has therefore remained elusive. We employed constrained spherical deconvolution (CSD) tractography - an approach that is much less susceptible to the influence of crossing fibres, in order to derive complete in-vivo characterizations of white matter pathways connecting specific motor cortical regions to their counterparts and other loci in the opposite hemisphere. The revealed patterns of connectivity closely resemble those derived from anatomical tracing in primates. It was established that dorsal premotor cortex (PMd) and supplementary motor area (SMA) have extensive interhemispheric connectivity - exhibiting both dense homologous projections, and widespread structural relations with every other region in the contralateral motor network. Through this in-vivo portrayal, the importance of non-primary motor regions for interhemispheric communication is emphasized. Additionally, distinct connectivity profiles were detected for the anterior and posterior subdivisions of primary motor cortex. The present findings provide a comprehensive representation of transcallosal white matter projections in humans, and have the potential to inform the development of models and hypotheses relating structural and functional brain connectivity.