172 resultados para Mortar additive. Cellulose phosphate. HEMC
Resumo:
There is currently a need to expand the range of graft materials available to orthopaedic surgeons. This study investigated the effect of ternary phosphate based glass (PBG) compositions on the behaviour of osteoblast and osteoblast-like cells. PBGs of the formula in mol% P2O5 (50)-CaO (50-X)-Na2O (X), where X was either 2, 4, 6, 8 or 10 were produced and their influence on the proliferation, differentiation and death in vitro of adult human bone marrow stromal cells (hBMSCs) and human fetal osteoblast 1.19 (HFOB 1.19) cells were assessed. Tissue culture plastic (TCP) and hydroxyapatite (HA) were used as controls. Exposure to PBGs in culture inhibited cell adhesion, proliferation and increased cell death in both cell types studied. There was no significant difference in %cell death between the PBGs which was significantly greater than the controls. However, compared to other PBGs, a greater number of cells was found on the 48 mol% CaO which may have been due to either increased adherence, proliferation or both. This composition was capable of supporting osteogenic proliferation and early differentiation and supports the notion that chemical modification of the glass could to lead to a more biologically compatible substrate with the potential to support osteogenic grafting. Realisation of this potential should lead to the development of novel grafting strategies for the treatment of problematic bone defects.
Resumo:
The dilute acid hydrolysis of grass and cellulose with phosphoric acid was undertaken in a microwave reactor system. The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemi-cellulose hydrolysis, due to a rapid hydrolysis reaction at moderate temperatures. The optimum conditions for grass hydrolysis were found to be 2.5% phosphoric acid at a temperature of 175 degrees C. It was found that sugar degradation occurred at acid concentrations greater than 2.5% (v/v) and temperatures greater than 175 degrees C. In a further series of experiments, the kinetics of dilute acid hydrolysis of cellulose was investigated varying phosphoric acid concentration and reaction temperatures. The experimental data indicate that the use of microwave technology can successfully facilitate dilute acid hydrolysis of cellulose allowing high yields of glucose in short reaction times. The optimum conditions gave a yield of 90% glucose. A pseudo-homogeneous consecutive first order reaction was assumed and the reaction rate constants were calculated as: k(1) = 0.0813 s(-1); k(2) = 0.0075 s(-1), which compare favourably with reaction rate constants found in conventional non-microwave reaction systems. The kinetic analysis would indicate that the primary advantages of employing microwave heating were to: achieve a high rate constant at moderate temperatures: and to prevent 'hot spot' formation within the reactor, which would have cause localised degradation of glucose.
Resumo:
BACKGROUND.: High serum phosphate has been identified as an important contributor to the vascular calcification seen in patients with chronic kidney disease (Block et al., Am J Kidney Dis 1998; 31: 607). In patients on hemodialysis, elevated serum phosphate levels are an independent predictor of mortality (Block et al., Am J Kidney Dis 1998; 31: 607; Block, Curr Opin Nephrol Hypertens 2001; 10: 741). The aim of this study was to investigate whether an elevated serum phosphate level was an independent predictor of mortality in patients with a renal transplant.
METHODS.: Three hundred seventy-nine asymptomatic renal transplant recipients were recruited between June 2000 and December 2002. Serum phosphate was measured at baseline and prospective follow-up data were collected at a median of 2441 days after enrolment.
RESULTS.: Serum phosphate was significantly higher in those renal transplant recipients who died at follow-up when compared with those who were still alive at follow-up (P<0.001). In Kaplan-Meier analysis, serum phosphate concentration was a significant predictor of mortality (P=0.0001). In multivariate Cox regression analysis, serum phosphate concentration remained a statistically significant predictor of all-cause mortality after adjustment for traditional cardiovascular risk factors, estimated glomerular filtration rate, and high sensitivity C reactive protein (P=0.036) and after adjustment for renal graft failure (P=0.001).
CONCLUSIONS.: The results of this prospective study are the first to show that a higher serum phosphate is a predictor of mortality in patients with a renal transplant and suggest that serum phosphate provides additional, independent, prognostic information to that provided by traditional risk factors in the risk assessment of patients with a renal transplant.
Resumo:
Major facilitators represent the largest superfamily of secondary active transporter proteins and catalyze the transport of an enormous variety of small solute molecules across biological membranes. However, individual superfamily members, although they may be architecturally similar, exhibit strict specificity toward the substrates they transport. The structural basis of this specificity is poorly understood. A member of the major facilitator superfamily is the glycerol-3-phosphate (G3P) transporter (GlpT) from the Escherichia coli inner membrane. GlpT is an antiporter that transports G3P into the cell in exchange for inorganic phosphate (Pi). By combining large-scale molecular-dynamics simulations, mutagenesis, substrate-binding affinity, and transport activity assays on GlpT, we were able to identify key amino acid residues that confer substrate specificity upon this protein. Our studies suggest that only a few amino acid residues that line the transporter lumen act as specificity determinants. Whereas R45, K80, H165, and, to a lesser extent Y38, Y42, and Y76 contribute to recognition of both free Pi and the phosphate moiety of G3P, the residues N162, Y266, and Y393 function in recognition of only the glycerol moiety of G3P. It is the latter interactions that give the transporter a higher affinity to G3P over Pi.