45 resultados para Momentum Accommodation Coefficient
Resumo:
The increase in the XUV mass absorption coefficient of liquid aluminium, produced by high-power-laser shock-compression, is measured using XUV laser radiography. At a photon energy of 63 eV a change in the mass absorption coefficient by up to a factor of similar to2.2 is determined at densities close to twice that of solid and electron temperatures of the order of 1 eV. Comparison with hydrodynamic simulations indicate that the absorption coefficient scales with density as rho (1.3 +/-0.2).
Resumo:
The determination of the earth pressure coefficient K 0 in a natural clay deposit is a problem of considerable significance in geotechnical engineering. While the methods for evaluation of K 0 are reliable for normally consolidated soils, significant difficulties still exist in evaluating K 0 in overconsolidated clays, given that it is influenced by the stress history of the material, together with the age, structure, mineralogical composition and depositional environment. Indeed, some of these factors are responsible for the soil becoming anisotropic. The existing framework for prediction of K 0 in overconsolidated soils does not account for any influences caused by anisotropy. The work reported in this paper evaluates the validity of a revised relationship between K 0oc and OCR (overconsolidation ratio) using data obtained from laboratory investigations. The tests were performed on reconstituted and undisturbed samples of Belfast Upper Boulder Clay, London Clay and Gault Clay. Tests were also performed on reconstituted samples of kaolin. The values of K 0oc were determined using various approaches, including on-sample measurements. The results have confirmed that reliable predictions of K 0oc can be made using the proposed relationship.
Resumo:
A method is presented for estimating the initial compression, the final compression and the coefficient of consolidation from an observed, experimental consolidation response, using a plot of velocity versus displacement and the conventional Taylor plot of compression versus the square root of time. Goodness of fit measures indicate that the method produces good agreement between fitted and measured displacement values, at least up until the point where the impact of secondary compression on the overall displacement response becomes significant.
Determining the Reaeration Coefficient and Hydrodynamic Properties of Rivers Using Inert Gas Tracers
Resumo:
Various contaminants which can be aerobically degraded find their way directly or indirectly into surface water bodies. The reaeration coefficient (K2) characterises the rate at which oxygen can transfer from the atmosphere across the air-water interface following oxygen depletion in a water body. Other mechanisms (like advection, dispersion and transient storage) determine how quickly the contaminants can spread in the water, affecting their spatial and temporal concentrations. Tracer methods involving injection of a gas into the water body have traditionally been used for direct (in-situ) measurement of K2 in a given reach. This paper shows how additional modelling of tracer test results can be used to quantify also hydrodynamic mechanisms (e.g. dispersion and storage exchange coefficients, etc.). Data from three tracer tests conducted in the River Lagan (Northern Ireland) using an inert gas (krypton, Kr) are re-analysed using two solute transport models (ADM, TSM) and an inverse-modelling framework (OTIS-P). Results for K2 are consistent with previously published values for this reach (K2(20)~10-40 d-1). The storage area constituted 30-60% of the main cross-section area and the storage exchange rate was between 2.5×10-3-3.2×10-3s-1. The additional hydrodynamic parameters obtained give insight into transport and dispersion mechanisms within the reach.
Resumo:
Gas fluidised beds have many applications in a wide range of industrial sectors and it is important to be able to predict their performance. This requires, for example, a deeper appreciation of the flow of the particles in such systems using both empirical and numerical methods. The coefficient of restitution is an important collisional parameter that is used in some granular flow models in order to predict the velocities and positions of the particles in fluidised beds. The current paper reports experimental data involving the coefficients of restitution of three different representative types of granule viz. melt, wet and binderless granules. They were measured at various impact velocities and the values were compared with those calculated from different theoretical models based on quasi-static contact mechanics. This required knowledge of the Young's moduli and yield stresses, which were measured quasi-statically using diametric compression. The results show that the current theoretical models for the coefficient of restitution explored here lead to either an over- or an under-estimation of the measured values. The melt granules exhibited the greatest values of the coefficient of restitution, Young's modulus and yield stress. The differences in these values were consistent with the nature of the interparticle bonding for each of the three granule types. A new model for the calculation of the coefficient of restitution of granular material was developed that takes account of the work hardening of the granules during impact. Generally, this model provides an improved prediction of the measured values. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Previous researchers use the velocity decay as an input to investigate the ship’s propeller jet induced scour. A researcher indicated that most of the equations used to predict the stability of various protection systems are often missing a physical background. The momentum decay and energy decay are currently proposed as an initial input for seabed scouring investigation, which are more sensible in physics. Computational fluid dynamics (CFD) and laser Doppler anemometry (LDA) experiments are used to obtain the velocity data and then transforming into momentum and energy decays. The findings proposed several exponential equations of velocity, momentum and energy decays to estimate the region exposed to the seabed scouring.
Resumo:
When simulating the High Pressure Die Casting ‘HPDC’ process, the heat transfer coefficient ‘HTC’ between the casting and the die is critical to accurately predict the quality of the casting. To determine the HTC at the metal–die interface a production die for an automotive engine bearing beam, Die 1, was instrumented with type K thermocouples. A Magmasoft® simulation model was generated with virtual thermocouple points placed in the same location as the production die. The temperature traces from the simulation model were compared to the instrumentation results. Using the default simulation HTC for the metal–die interface, a poor correlation was seen, with the temperature response being much less for the simulation model. Because of this, the HTC at the metal–die interface was modified in order to get a better fit. After many simulation iterations, a good fit was established using a peak HTC of 42,000 W/m2 K, this modified HTC was further validated by a second instrumented production die, proving that the modified HTC gives good correlation to the instrumentation trials. The updated HTC properties for the simulation model will improve the predictive capabilities of the casting simulation software and better predict casting defects.
Resumo:
The FRAP reagent contains 2,4,6-tris(2-pyridyl)-s-triazine, which forms a blue-violet complex ion in the presence of ferrous ions. Although the FRAP (ferric reducing/antioxidant power) assay is popular and has been in use for many years, the correct molar extinction coefficient of this complex ion under FRAP assay conditions has never been published, casting doubt on the validity of previous calibrations. A previously reported value of 19.800 is an underestimate. We determined that the molar extinction coefficient was 21,140. The value of the molar extinction coefficient was also shown to depend on the type of assay and was found to be 22,230 under iron assay conditions, in good agreement with published data. Redox titration indicated that the ferrous sulfate heptahydrate calibrator recommended by Benzie and Strain, the FRAP assay inventors, is prone to efflorescence and, therefore, is unreliable. Ferrous ammonium sulfate hexahydrate in dilute sulfuric acid was a more stable alternative. Few authors publish their calibration data, and this makes comparative analyses impossible. A critical examination of the limited number of examples of calibration data in the published literature reveals only that Benzie and Strain obtained a satisfactory calibration using their method. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The present study proposed the semi-empirical methods for determining the efflux velocity from a ship's propeller. Ryan [1] defined the efflux velocity as the maximum velocity taken from a time-averaged velocity distribution along the initial propeller plane. The Laser Doppler Anemometry (LDA) and Computational Fluid Dynamics (CFD) were used to acquire the efflux velocity from the two propellers with different geometrical characteristics. The LDA and CFD results were compared in order to investigate the equation derived from the axial momentum theory. The study confirmed the validation of the axial momentum theory and its linear relationship between the efflux velocity and the multiplication of the rotational speed, propeller diameter and the square root of thrust coefficient. The linear relationship of these two terms is connected by an efflux coefficient and the value of this efflux coefficient reduced when the blade number increased.