89 resultados para Modeling and simulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous papers have noted the difficulty in obtaining neural models which are stable under simulation when trained using prediction-error-based methods. Here the differences between series-parallel and parallel identification structures for training neural models are investigated. The effect of the error surface shape on training convergence and simulation performance is analysed using a standard algorithm operating in both training modes. A combined series-parallel/parallel training scheme is proposed, aiming to provide a more effective means of obtaining accurate neural simulation models. Simulation examples show the combined scheme is advantageous in circumstances where the solution space is known or suspected to be complex. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents research for developing a virtual inspection system that evaluates the dimensional tolerance of forged aerofoil blades formed using the finite element (FE) method. Conventional algorithms adopted by modern coordinate measurement processes have been incorporated with the latest free-form surface evaluation techniques to provide a robust framework for the dimensional inspection of FE aerofoil models. The accuracy of the approach had been verified with a strong correlation obtained between the virtual inspection data and coordinate measurement data from corresponding aerofoil components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ligand prediction has been driven by a fundamental desire to understand more about how biomolecules recognize their ligands and by the commercial imperative to develop new drugs. Most of the current available software systems are very complex and time-consuming to use. Therefore, developing simple and efficient tools to perform initial screening of interesting compounds is an appealing idea. In this paper, we introduce our tool for very rapid screening for likely ligands (either substrates or inhibitors) based on reasoning with imprecise probabilistic knowledge elicited from past experiments. Probabilistic knowledge is input to the system via a user-friendly interface showing a base compound structure. A prediction of whether a particular compound is a substrate is queried against the acquired probabilistic knowledge base and a probability is returned as an indication of the prediction. This tool will be particularly useful in situations where a number of similar compounds have been screened experimentally, but information is not available for all possible members of that group of compounds. We use two case studies to demonstrate how to use the tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of clinical trials reports is increasing rapidly due to a large number of clinical trials being conducted; it, therefore, raises an urgent need to utilize the clinical knowledge contained in the clinical trials reports. In this paper, we focus on the qualitative knowledge instead of quantitative knowledge. More precisely, we aim to model and reason with the qualitative comparison (QC for short) relations which consider qualitatively how strongly one drug/therapy is preferred to another in a clinical point of view. To this end, first, we formalize the QC relations, introduce the notions of QC language, QC base, and QC profile; second, we propose a set of induction rules for the QC relations and provide grading interpretations for the QC bases and show how to determine whether a QC base is consistent. Furthermore, when a QC base is inconsistent, we analyze how to measure inconsistencies among QC bases, and we propose different approaches to merging multiple QC bases. Finally, a case study on lowering intraocular pressure is conducted to illustrate our approaches.