36 resultados para Mixed linear models
Resumo:
Context: Shared care models integrating family physician services with interdisciplinary palliative care specialist teams are critical to improve access to quality palliative home care and address multiple domains of end-of-life issues and needs. Objectives: To examine the impact of a shared care pilot program on the primary outcomes of symptom severity and emotional distress (patient and family separately) over time and, secondarily, the concordance between patient preferences and place of death. Methods: An inception cohort of patients (n = 95) with advanced, progressive disease, expected to die within six months, were recruited from three rural family physician group practices (21 physicians) and followed prospectively until death or pilot end. Serial measurement of symptoms, emotional distress (patient and family), and preferences for place of death was performed, with analysis of changes in distress outcomes assessed using t-tests and general linear models. Results: Symptoms trended toward improvement, with a significant reduction in anxiety from baseline to 14 days noted. Symptom and emotional distress were maintained below high severity (7-10), and a high rate of home death compared with population norms was observed. Conclusion: Future controlled studies are needed to examine outcomes for shared care models with comparison groups. Shared care models build on family physician capacity and as such are promising in the development of palliative home care programs to improve access to quality palliative home care and foster health system integration. © 2011 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.
Resumo:
The aim of the present study was to investigate the responses of phase I and II biotransformation enzymes and levels of PAHs in the Mediterranean mussel (Mytilus galloprovincialis, Lamarck, 1819) collected from three sites at different distance from an oil refinery. Phase I enzyme activities as NAD(P)H-cyt c red, NADH ferry red, B(a)PMO and phase II as UDPGT. GST were measured in digestive gland while 16 PAHs (US-EPA) in whole soft tissue. An added value to the data obtained in the present study rely on the RDA analysis which showed close correlations between PAHs levels and phase I enzyme activities in mussels collected in front of the refinery. And again a significant spatial correlation between B(a)P levels and NADPH-cyt c red activities was observed using linear models. No differences among sites for B(a) PMO and phase II GST activities were observed, while the application of UDPGT as biomarkers requires further investigation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We predicted that the probability of egg occurrence of salamander Salamandrina perspicillata depended on stream features and predation by native crayfish Austropotamobius fulcisianus and the introduced trout Salmo trutta. We assessed the presence of S. perspicillata at 54 sites within a natural reserve of southern Tuscany, Italy. Generalized linear models with binomial errors were constructed using egg presence/absence and altitude, stream mean size and slope, electrical conductivity, water pH and temperature, and a predation factor, defined according to the presence/absence of crayfish and trout. Some competing models also included an autocovariate term, which estimated how much the response variable at any one sampling point reflected response values at surrounding points. The resulting models were compared using Akaike's information criterion. Model selection led to a subset of 14 models with Delta AIC(c) <7 (i.e., models ranging from substantial support to considerably less support), and all but one of these included an effect of predation. Models with the autocovariate term had considerably more support than those without the term. According to multimodel inference, the presence of trout and crayfish reduced the probability of egg occurrence from a mean level of 0.90 (SE limits: 0.98-0.55) to 0.12 (SE limits: 0.34-0.04). The presence of crayfish alone had no detectable effects (SE limits: 0.86-0.39). The results suggest that introduced trout have a detrimental effect on the reproductive output of S. perspicillata and confirm the fundamental importance of distinguishing the roles of endogenous and exogenous forces that act on population distribution.
Resumo:
Quantitative scaling relationships among body mass, temperature and metabolic rate of organisms are still controversial, while resolution may be further complicated through the use of different and possibly inappropriate approaches to statistical analysis. We propose the application of a modelling strategy based on the theoretical approach of Akaike's information criteria and non-linear model fitting (nlm). Accordingly, we collated and modelled available data at intraspecific level on the individual standard metabolic rate of Antarctic microarthropods as a function of body mass (M), temperature (T), species identity (S) and high rank taxa to which species belong (G) and tested predictions from metabolic scaling theory (mass-metabolism allometric exponent b = 0.75, activation energy range 0.2-1.2 eV). We also performed allometric analysis based on logarithmic transformations (lm). Conclusions from lm and nlm approaches were different. Best-supported models from lm incorporated T, M and S. The estimates of the allometric scaling exponent linking body mass and metabolic rate resulted in a value of 0.696 +/- 0.105 (mean +/- 95% CI). In contrast, the four best-supported nlm models suggested that both the scaling exponent and activation energy significantly vary across the high rank taxa (Collembola, Cryptostigmata, Mesostigmata and Prostigmata) to which species belong, with mean values of b ranging from about 0.6 to 0.8. We therefore reached two conclusions: 1, published analyses of arthropod metabolism based on logarithmic data may be biased by data transformation; 2, non-linear models applied to Antarctic microarthropod metabolic rate suggest that intraspecific scaling of standard metabolic rate in Antarctic microarthropods is highly variable and can be characterised by scaling exponents that greatly vary within taxa, which may have biased previous interspecific comparisons that neglected intraspecific variability.
Resumo:
We tested whether the distribution of three common springtail species (Gressittacantha terranova, Gomphiocephalus hodgsoni and Friesea grisea) in Victoria Land (Antarctica) could be modelled as a function of latitude, longitude, altitude and distance from the sea.
Victoria Land, Ross Dependency, Antarctica.
Generalized linear models were constructed using species presence/absence data relative to geographical features (latitude, longitude, altitude, distance from sea) across the species' entire ranges. Model results were then integrated with the known phylogeography of each species and hypotheses were generated on the role of climate as a major driver of Antarctic springtail distribution.
Based on model selection using Akaike's information criterion, the species' distributions were: hump-shaped relative to longitude and monotonic with altitude for Gressittacantha terranova; hump-shaped relative to latitude and monotonic with altitude for Gomphiocephalus hodgsoni; and hump-shaped relative to longitude and monotonic with latitude, altitude and distance from the sea for Friesea grisea.
No single distributional pattern was shared by the three species. While distributions were partially a response to climatic spatial clines, the patterns observed strongly suggest that past geological events have influenced the observed distributions. Accordingly, present-day spatial patterns are likely to have arisen from the interaction of historical and environmental drivers. Future studies will need to integrate a range of spatial and temporal scales to further quantify their respective roles.
Resumo:
Empirical studies of the spatiotemporal dynamics of populations are required to better understand natural fluctuations in abundance and reproductive success, and to better target conservation and monitoring programmes. In particular, spatial synchrony in amphibian populations remains little studied. We used data from a comprehensive three year study of natterjack toad Bufo calamita populations breeding at 36 ponds to assess whether there was spatial synchrony in the toad breeding activity (start and length of breeding season, total number of egg strings) and reproductive success (premetamorphic survival and production of metamorphs). We defined a novel approach to assess the importance of short-term synchrony at both local and regional scales. The approach employs similarity indices and quantifies the interaction between the temporal and spatial components of populations using mixed effects models. There was no synchrony in the toad breeding activity and reproductive success at the local scale, suggesting that populations function as individual clusters independent of each other. Regional synchrony was apparent in the commencement and duration of the breeding season and in the number of egg strings laid (indicative of female population size). Regional synchrony in both rainfall and temperature are likely to explain the patterns observed (e.g. Moran effect). There was no evidence supporting regional synchrony in reproductive success, most likely due to spatial variability in the environmental conditions at the breeding ponds, and to differences in local population fitness (e.g. fecundity). The small scale asynchronous dynamics and regional synchronous dynamics in the number of breeding females indicate that it is best to monitor several populations within a subset of regions. Importantly, variations in the toad breeding activity and reproductive success are not synchronous, and it is thus important to consider them both when assessing the conservation status of pond-breeding amphibians. © 2012 The Authors. Ecography © 2012 Nordic Society Oikos.
Resumo:
Objective
To examine age and gender specific trends in coronary heart disease (CHD) and stroke mortality in two neighbouring countries, the Republic of Ireland (ROI) and Northern Ireland (NI). Design Epidemiological study of time trends in CHD and stroke mortality.
Setting/patients
The populations of the ROI and NI, 1985–2010.
Interventions
None.
Main outcome measures
Directly age standardised CHD and stroke mortality rates were calculated and analysed using joinpoint regression to identify years where the slope of the linear trend changed significantly. This was performed separately for specific age groups (25–54, 55–64, 65–74 and 75–84 years) and by gender. Annual percentage change (APC) and 95% CIs are presented.
Results
There was a striking similarity between the two countries, with percentage change between 1985 and 1989 and between 2006 and 2010 of 67% and 69% in
CHD mortality, and 64% and 62% in stroke mortality for the ROI and NI, respectively. However, joinpoint analysis identified differences in the pace of change between the two countries. There was an accelerated pace of decline (negative APC) in mortality for both CHD and stroke in both countries from the mid-1990s (APC ROI −8% (95% CI −9.5 to 6.5) and NI −6.6% (−6.9 to −6.3)), but the accelerated decrease started later for CHD mortality in the ROI. In recent years, a levelling off in CHD mortality was observed in the 25–54 year age group in NI and in stroke mortality for men and women in the ROI.
Conclusions
While differences in the pace of change in mortality were observed at different time points, similar, substantial decreases in CHD and stroke mortality were achieved between 1985 and 1989 and between 2006 and 2010 in the ROI and NI despite important differences in health service structures. There is evidence of a levelling in mortality rates in some groups in recent years.
A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar
Resumo:
Pattern and process are inextricably linked in biogeographic analyses, though we can observe pattern, we must infer process. Inferences of process are often based on ad hoc comparisons using a single spatial predictor. Here, we present an alternative approach that uses mixed-spatial models to measure the predictive potential of combinations of hypotheses. Biodiversity patterns are estimated from 8,362 occurrence records from 745 species of Malagasy amphibians and reptiles. By incorporating 18 spatially explicit predictions of 12 major biogeographic hypotheses, we show that mixed models greatly improve our ability to explain the observed biodiversity patterns. We conclude that patterns are influenced by a combination of diversification processes rather than by a single predominant mechanism. A ‘one-size-fits-all’ model does not exist. By developing a novel method for examining and synthesizing spatial parameters such as species richness, endemism and community similarity, we demonstrate the potential of these analyses for understanding the diversification history of Madagascar’s biota.
Resumo:
In this paper the evolution of a time domain dynamic identification technique based on a statistical moment approach is presented. This technique can be used in the case of structures under base random excitations in the linear state and in the non linear one. By applying Itoˆ stochastic calculus, special algebraic equations can be obtained depending on the statistical moments of the response of the system to be identified. Such equations can be used for the dynamic identification of the mechanical parameters and of the input. The above equations, differently from many techniques in the literature, show the possibility of obtaining the identification of the dissipation characteristics independently from the input. Through the paper the first formulation of this technique, applicable to non linear systems, based on the use of a restricted class of the potential models, is presented. Further a second formulation of the technique in object, applicable to each kind of linear systems and based on the use of a class of linear models, characterized by a mass proportional damping matrix, is described.
Resumo:
This study is the first to compare random regret minimisation (RRM) and random utility maximisation (RUM) in freight transport application. This paper aims to compare RRM and RUM in a freight transport scenario involving negative shock in the reference alternative. Based on data from two stated choice experiments conducted among Swiss logistics managers, this study contributes to related literature by exploring for the first time the use of mixed logit models in the most recent version of the RRM approach. We further investigate two paradigm choices by computing elasticities and forecasting choice probability. We find that regret is important in describing the managers’ choices. Regret increases in the shock scenario, supporting the idea that a shift in reference point can cause a shift towards regret minimisation. Differences in elasticities and forecast probability are identified and discussed appropriately.
Resumo:
Farmed fish are typically genetically different from wild conspecifics. Escapees from fish farms may contribute one-way gene flow from farm to wild gene pools, which can depress population productivity, dilute local adaptations and disrupt coadapted gene complexes. Here, we reanalyse data from two experiments (McGinnity et al., 1997, 2003) where performance of Atlantic salmon (Salmo salar) progeny originating from experimental crosses between farm and wild parents (in three different cohorts) were measured in a natural stream under common garden conditions. Previous published analyses focussed on group-level differences but did not account for pedigree structure, as we do here using modern mixed-effect models. Offspring with one or two farm parents exhibited poorer survival in their first and second year of life compared with those with two wild parents and these group-level inferences were robust to excluding outlier families. Variation in performance among farm, hybrid and wild families was generally similar in magnitude. Farm offspring were generally larger at all life stages examined than wild offspring, but the differences were moderate (5–20%) and similar in magnitude in the wild versus hatchery environments. Quantitative genetic analyses conducted using a Bayesian framework revealed moderate heritability in juvenile fork length and mass and positive genetic correlations (>0.85) between these morphological traits. Our study confirms (using more rigorous statistical techniques) previous studies showing that offspring of wild fish invariably have higher fitness and contributes fresh insights into family-level variation in performance of farm, wild and hybrid Atlantic salmon families in the wild. It also adds to a small, but growing, number of studies that estimate key evolutionary parameters in wild salmonid populations. Such information is vital in modelling the impacts of introgression by escaped farm salmon.
Resumo:
Extrusion is one of the major methods for processing polymeric materials and the thermal homogeneity of the process output is a major concern for manufacture of high quality extruded products. Therefore, accurate process thermal monitoring and control are important for product quality control. However, most industrial extruders use single point thermocouples for the temperature monitoring/control although their measurements are highly affected by the barrel metal wall temperature. Currently, no industrially established thermal profile measurement technique is available. Furthermore, it has been shown that the melt temperature changes considerably with the die radial position and hence point/bulk measurements are not sufficient for monitoring and control of the temperature across the melt flow. The majority of process thermal control methods are based on linear models which are not capable of dealing with process nonlinearities. In this work, the die melt temperature profile of a single screw extruder was monitored by a thermocouple mesh technique. The data obtained was used to develop a novel approach of modelling the extruder die melt temperature profile under dynamic conditions (i.e. for predicting the die melt temperature profile in real-time). These newly proposed models were in good agreement with the measured unseen data. They were then used to explore the effects of process settings, material and screw geometry on the die melt temperature profile. The results showed that the process thermal homogeneity was affected in a complex manner by changing the process settings, screw geometry and material.
Resumo:
Emotion research has long been dominated by the “standard method” of displaying posed or acted static images of facial expressions of emotion. While this method has been useful it is unable to investigate the dynamic nature of emotion expression. Although continuous self-report traces have enabled the measurement of dynamic expressions of emotion, a consensus has not been reached on the correct statistical techniques that permit inferences to be made with such measures. We propose Generalized Additive Models and Generalized Additive Mixed Models as techniques that can account for the dynamic nature of such continuous measures. These models allow us to hold constant shared components of responses that are due to perceived emotion across time, while enabling inference concerning linear differences between groups. The mixed model GAMM approach is preferred as it can account for autocorrelation in time series data and allows emotion decoding participants to be modelled as random effects. To increase confidence in linear differences we assess the methods that address interactions between categorical variables and dynamic changes over time. In addition we provide comments on the use of Generalized Additive Models to assess the effect size of shared perceived emotion and discuss sample sizes. Finally we address additional uses, the inference of feature detection, continuous variable interactions, and measurement of ambiguity.
Willingness to Pay for Rural Landscape Improvements: Combining Mixed Logit and Random-Effects Models
Resumo:
This paper reports the findings from a discrete-choice experiment designed to estimate the economic benefits associated with rural landscape improvements in Ireland. Using a mixed logit model, the panel nature of the dataset is exploited to retrieve willingness-to-pay values for every individual in the sample. This departs from customary approaches in which the willingness-to-pay estimates are normally expressed as measures of central tendency of an a priori distribution. Random-effects models for panel data are subsequently used to identify the determinants of the individual-specific willingness-to-pay estimates. In comparison with the standard methods used to incorporate individual-specific variables into the analysis of discrete-choice experiments, the analytical approach outlined in this paper is shown to add considerable explanatory power to the welfare estimates.