22 resultados para Mixed integer linear programming (MILP) model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper points out a serious flaw in dynamic multivariate statistical process control (MSPC). The principal component analysis of a linear time series model that is employed to capture auto- and cross-correlation in recorded data may produce a considerable number of variables to be analysed. To give a dynamic representation of the data (based on variable correlation) and circumvent the production of a large time-series structure, a linear state space model is used here instead. The paper demonstrates that incorporating a state space model, the number of variables to be analysed dynamically can be considerably reduced, compared to conventional dynamic MSPC techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel hybrid forward algorithm (HFA) for the construction of radial basis function (RBF) neural networks with tunable nodes. The main objective is to efficiently and effectively produce a parsimonious RBF neural network that generalizes well. In this study, it is achieved through simultaneous network structure determination and parameter optimization on the continuous parameter space. This is a mixed integer hard problem and the proposed HFA tackles this problem using an integrated analytic framework, leading to significantly improved network performance and reduced memory usage for the network construction. The computational complexity analysis confirms the efficiency of the proposed algorithm, and the simulation results demonstrate its effectiveness

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Incidence calculus is a mechanism for probabilistic reasoning in which sets of possible worlds, called incidences, are associated with axioms, and probabilities are then associated with these sets. Inference rules are used to deduce bounds on the incidence of formulae which are not axioms, and bounds for the probability of such a formula can then be obtained. In practice an assignment of probabilities directly to axioms may be given, and it is then necessary to find an assignment of incidence which will reproduce these probabilities. We show that this task of assigning incidences can be viewed as a tree searching problem, and two techniques for performing this research are discussed. One of these is a new proposal involving a depth first search, while the other incorporates a random element. A Prolog implementation of these methods has been developed. The two approaches are compared for efficiency and the significance of their results are discussed. Finally we discuss a new proposal for applying techniques from linear programming to incidence calculus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a feature selection method for data classification, which combines a model-based variable selection technique and a fast two-stage subset selection algorithm. The relationship between a specified (and complete) set of candidate features and the class label is modelled using a non-linear full regression model which is linear-in-the-parameters. The performance of a sub-model measured by the sum of the squared-errors (SSE) is used to score the informativeness of the subset of features involved in the sub-model. The two-stage subset selection algorithm approaches a solution sub-model with the SSE being locally minimized. The features involved in the solution sub-model are selected as inputs to support vector machines (SVMs) for classification. The memory requirement of this algorithm is independent of the number of training patterns. This property makes this method suitable for applications executed in mobile devices where physical RAM memory is very limited. An application was developed for activity recognition, which implements the proposed feature selection algorithm and an SVM training procedure. Experiments are carried out with the application running on a PDA for human activity recognition using accelerometer data. A comparison with an information gain based feature selection method demonstrates the effectiveness and efficiency of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-resonant multiphoton ionization combined with quadrupole and time-of-flight analysis has been used to study sputtering by both atomic and molecular ion beams. The mass spectra and energy distributions of both sputtered atoms and secondary ions produced by 3.6 keV Ar+, N+, N-2(+), CF2+ and CF3+ ion bombardment at 45 degrees to a polycrystalline copper target have been measured. The energy distributions of the copper ions and atoms are found to be different and quite complex. The ion distributions can generally be described by a linear collision cascade model, with possible evidence for a knock-on contribution. The sputtered atom distributions are partially described by a combination of linear collision cascade and dense cascade (thermal spike) models. This is interpreted as support for a time-evolving sputtering mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies disinflationary shocks in a non-linear New Keynesian model with search and matching frictions and moral hazard in the labor markets. Our focus is on understanding the wage formation process as well as welfare costs of disinflations in the presence of such labor market frictions.

The presence of imperfect information in labor markets imposes a lower bound on worker surplus that varies endogenously. Consequently equilibrium can take two forms depending on whether the no shirking condition is binding or not. We also evaluate both regimes from a welfare perspective when the economy is subject to a perfectly credible disinflationary shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of the Tesla in 2008 has demonstrated to the public of the potential of electric vehicles in terms of reducing fuel consumption and green-house gas from the transport sector. It has brought electric vehicles back into the spotlight worldwide at a moment when fossil fuel prices were reaching unexpected high due to increased demand and strong economic growth. The energy storage capabilities from of fleets of electric vehicles as well as the potentially random discharging and charging offers challenges to the grid in terms of operation and control. Optimal scheduling strategies are key to integrating large numbers of electric vehicles and the smart grid. In this paper, state-of-the-art optimization methods are reviewed on scheduling strategies for the grid integration with electric vehicles. The paper starts with a concise introduction to analytical charging strategies, followed by a review of a number of classical numerical optimization methods, including linear programming, non-linear programming, dynamic programming as well as some other means such as queuing theory. Meta-heuristic techniques are then discussed to deal with the complex, high-dimensional and multi-objective scheduling problem associated with stochastic charging and discharging of electric vehicles. Finally, future research directions are suggested.