27 resultados para Microtensile bond strength
Resumo:
This paper reports a study carried out to assess the impact of the use of self-compacting concrete (SCC) on bond and interfacial properties around steel reinforcement in practical concrete element. The pull-out tests were carried out to determine bond strength between reinforcing steel bar and concrete, and the depth-sensing nano-indentation technique was used to evaluate the elastic modulus and micro-strength of the interracial transition zone (ITZ) around steel reinforcement. The bond and interracial properties around deformed steel bars in different SCC mixes with strength grades of 35 MPa and 60 MPa (C35, C60) were examined together with those in conventional vibrated reference concrete with the same strength grades. The results showed that the maximum bond strength decreased when the diameter of the steel bar increased from 12 to 20 mm. The normalised bond strengths of the SCC mixes were found to be about 10-40% higher than those of the reference mixes for both bar diameters (12 and 20 mm). The study of the interfacial properties revealed that the elastic modulus and the micro-strength of the ITZ were lower on the bottom side of a horizontal steel bar than on the top side, particularly for the vibrated reference concrete. The difference of ITZ properties between top and bottom side of the horizontal steel bar appeared to be less pronounced for the SCC mixes than for the corresponding reference mixes.
Resumo:
A solvent-vapour thermoplastic bonding process is reported which provides high strength bonding of PMMA over a large area for multi-channel and multi-layer microfluidic devices with shallow high resolution channel features. The bond process utilises a low temperature vacuum thermal fusion step with prior exposure of the substrate to chloroform (CHCl3) vapour to reduce bond temperature to below the PMMA glass transition temperature. Peak tensile and shear bond strengths greater than 3 MPa were achieved for a typical channel depth reduction of 25 µm. The device-equivalent bond performance was evaluated for multiple layers and high resolution channel features using double-side and single-side exposure of the bonding pieces. A single-sided exposure process was achieved which is suited to multi-layer bonding with channel alignment at the expense of greater depth loss and a reduction in peak bond strength. However, leak and burst tests demonstrate bond integrity up to at least 10 bar channel pressure over the full substrate area of 100 mm x 100 mm. The inclusion of metal tracks within the bond resulted in no loss of performance. The vertical wall integrity between channels was found to be compromised by solvent permeation for wall thicknesses of 100 µm which has implications for high resolution serpentine structures. Bond strength is reduced considerably for multi-layer patterned substrates where features on each layer are not aligned, despite the presence of an intermediate blank substrate. Overall a high performance bond process has been developed that has the potential to meet the stringent specifications for lab-on-chip deployment in harsh environmental conditions for applications such as deep ocean profiling.
Resumo:
Strengthening RC structures with near-surface mounted (NSM) fibre reinforced polymer (FRP) composites has a number of advantages compared with that with externally bonded (EB) FRP sheets/plates. As with EB FRP, the performance of the bond between NSM FRP and concrete is one of the key factors affecting the behaviour of the strengthened structure. This paper presents a numerical investigation into the behaviour of NSM FRP loaded at its both ends to simulate the NSM FRP-toconcrete bond between two adjacent cracks in RC members. The main objective of this study is to quantitatively clarify the effect of the bondline damage during slip reversal on the ultimate load (bond strength). The results show that the bondline damage has a significant effect on the load-carrying capacity of the NSM FRP-to-concrete bonded interface and should be considered in FE modeling of the interface.
Resumo:
With ever increasing demands to strengthen existing reinforced concrete structures to facilitate higher loading due to change of use and to extend service lifetime, the use of fibre reinforced polymers (FRPs) in structural retrofitting offers an opportunity to achieve these aims. To date, most research in this area has focussed on the use of glass fibre reinforced polymer (GFRP) and carbon fibre reinforced polymer (CFRP), with relatively little on the use of basalt fibre reinforced polymer (BFRP) as a suitable strengthening material. In addition, most previous research has been carried out using simply supported elements, which have not considered the beneficial influence of in-plane lateral restraint, as experienced within a framed building structure. Furthermore, by installing FRPs using the near surface mounted (NSM) technique, disturbance to the existing structure can be minimised.
This paper outlines BFRP NSM strengthening of one third scale laterally restrained floor slabs which reflect the inherent insitu compressive membrane action (CMA) in such slabs. The span-to-depth ratios of the test slabs were 20 and 15 and all were constructed with normal strength concrete (~40N/mm2) and 0.15% steel reinforcement. 0.10% BFRP was used in the retrofitted samples, which were compared with unretrofitted control samples. In addition, the bond strength of BFRP bars bonded into concrete was investigated over a range of bond lengths with two different adhesive thicknesses. This involved using an articulated beam arrangement in order to establish optimum bond characteristics for use in strengthening slab samples.
Resumo:
This paper describes an experimental investigation of the behaviour of corroded reinforced concrete beams. These have been stored in a chloride environment for a period of 26 years under service loading so as to be representative of real structural and environmental conditions. The configuration and the widths of the cracks in the two seriously corroded short-span beams were depicted carefully, and then the beams were tested until failure by a three-point loading system. Another two beams of the same age but without corrosion were also tested as control specimens. A short span arrangement was chosen to investigate any effect of a reduction in the area and bond strength of the reinforcement on shear capacity. The relationship of load and deflection was recorded so as to better understand the mechanical behaviour of the corroded beams, together with the slip of the tensile bars. The corrosion maps and the loss of area of the tensile bars were also described after having extracted the corroded bars from the concrete beams. Tensile tests of the main longitudinal bars were also carried out. The residual mechanical behaviour of the beams is discussed in terms of the experimental results and the cracking maps. The results show that the corrosion of the reinforcement in the beams induced by chloride has a very important effect on the mechanical behaviour of the short-span beams, as loss of cross-sectional area and bond strength have a very significant effect on the bending capacity.
Resumo:
In this study, 21 small beam specimens with a pre-set through-crack were tested with FRP strips bonded to the sides to study the bond behavior between shear-strengthening FRP and concrete (referred to as "the interface" for simplicity hereafter). The test parameters included the bond length, width, thickness of FRP strip and the angle between fiber orientation and crack opening direction (referred to as "fiber tensile angle" θ hereafter) on the bond behavior of the interface. Test results showed that: 1) the small beam test setup with a pre-set crack is suitable for studying the bond behavior between FRP and concrete; 2) the bond length, width, and thickness of the FRP as well as the fiber angle have significant effects on the bond strength; 3) the distribution of FRP strains along the direction perpendicular to the fiber orientation (FRP width direction) is non-uniform; this is mainly attributed to the progressive debonding of the FRP strips in the width direction, with the FRP at the location of larger crack width debonding earlier.
Resumo:
An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.
Resumo:
Previously we have shown that organic solutes can be extracted from ionic liquids (ILs) with supercritical CO2 and that ILs can be induced to separate from organic and aqueous mixtures by applying gaseous CO2 pressure. Thus, we are interested in the solvent strength of IL/CO2 mixtures. Here we use 4-nitroaniline, N,N-diethyl-4-nitroaniline and Reichardt's dye 33 to determine the Kamlet-Taft parameters for four different imidazolium based ILs and their mixtures with CO2 at 25 and 40degreesC. The effect of temperature and carbon dioxide concentration on these parameters was determined. The polarizability parameter depends weakly on the CO2 concentration. However, the hydrogen bond donating ability and the hydrogen bond accepting ability are virtually independent Of CO2 pressure. The results indicate that the strong interactions between ILs and probe molecules are not influenced by CO2.
Resumo:
An experimental research addressing the effects of concrete composition and strength on anchorage bond behavior of prestressing reinforcement is presented to clarify the effect of material properties that have appeared contradictory in previous literature. Bond stresses and anchorage lengths have been obtained in twelve concrete mixes made up of different cement contents (C) – 350 to 500 kg/m3 – and water/cement (w/c) ratios – 0.3 to 0.5 – with compressive strength at 24 h ranging from 24 to 55 MPa. A testing technique based on measuring the prestressing force in specimens with different embedment lengths has been used. The results show that anchorage length increases when w/c increases, more significantly when C is higher; the effect of C reveals different trends based on w/c. The obtained anchorage bond stresses are greater for higher concrete compressive strength, and their average ratio of 1.45 with respect to transmission bond stresses implies a potential bond capacity.
Resumo:
Objectives: To determine, by means of static fracture testing the effect of the tooth preparation design and the elastic modulus of the cement on the structural integrity of the cemented machined ceramic crown-tooth complex.
Methods: Human maxillary extracted premolar teeth were prepared for all-ceramic crowns using two preparation designs; a standard preparation in accordance with established protocols and a novel design with a flat occlusal design. All-ceramic feldspathic (Vita MK II) crowns were milled for all the preparations using a CAD/CAM system (CEREC-3). The machined all-ceramic crowns were resin bonded to the tooth structure using one of three cements with different elastic moduli: Super-Bond C&B, Rely X Unicem and Panavia F 2.0. The specimens were subjected to compressive force through a 4 mm diameter steel ball at a crosshead speed of 1 mm/min using a universal test machine (Loyds Instrument Model LRX.). The load at the fracture point was recorded for each specimen in Newtons (N). These values were compared to a control group of unprepared/unrestored teeth.
Results: There was a significant difference between the control group, with higher fracture strength, and the cemented samples regardless of the occlusal design and the type of resin cement. There was no significant difference in mean fracture load between the two designs of occlusal preparation using Super-Bond C&B. For the Rely X Unicem and Panavia F 2.0 cements, the proposed preparation design with a flat occlusal morphology provides a system with increased fracture strength.
Significance: The proposed novel flat design showed less dependency on the resin cement selection in relation to the fracture strength of the restored tooth. The choice of the cement resin, with respect to its modulus of elasticity, is more important in the anatomic design than in the flat design. © 2013 Academy of Dental Materials.
Resumo:
Bonded-in rod connections in timber possess many desirable attributes in terms of efficiency, manufacture, performance, aesthetics and cost. In recent years research has been conducted on such connections using fibre reinforced polymers (FRPs) as an alternative to steel. This research programme investigates the pull-out capacity of Basalt FRP rods bonded-in in low grade Irish Sitka Spruce. Embedded length is thought to be the most influential variable contributing to pull- out capacity of bonded-in rods after rod diameter. Previous work has established an optimum embedded length of 15 times the hole diameter. However, this work only considered the effects of axial stress on the bond using a pull-compression testing system which may have given an artificially high pull out capacity as bending effects were neglected. A hinge system was utilised that allows the effects of bending force to be taken in to consideration along with axial forces in a pull-out test. This paper describes an experimental programme where such pull-bending tests were carried out on samples constructed of 12mm diameter BFRP bars with a 2mm glueline thickness and embedded lengths between 80mm and 280mm bonded-in to low-grade timber with an epoxy resin. Nine repetitions of each were tested. A clear increase in pull-out strength was found with increasing embedded length.
Resumo:
This paper presents a study on the bond behaviour of FRP-concrete bonded joints under static and dynamic loadings, by developing a meso-scale finite element model using the K&C concrete damage model in LS-DYNA. A significant number of single shear experiments under static pull-off loading were modelled with an extensive parametric study covering key factors in the K&C model, including the crack band width, the compressive fracture energy and the shear dilatation factor. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of mesh objectivity, the load-carrying capacity and the local bond-slip behaviour, provided that proper consideration is given to the selection of crack band width and shear dilatation factor. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor (DIF) for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario.