37 resultados para Microscopic observation drug susceptibility assay (MODS)
Resumo:
Purpose: We have shown previously that exposure to anticancer drugs can trigger the activation of human epidermal receptor survival pathways in colorectal cancer (CRC). In this study, we examined the role of ADAMs (a disintegrin and metalloproteinases) and soluble growth factors in this acute drug resistance mechanism.
Experimental Design: In vitro and in vivo models of CRC were assessed. ADAM-17 activity was measured using a fluorometric assay. Ligand shedding was assessed by ELISA or Western blotting. Apoptosis was assessed by flow cytometry and Western blotting.
Results: Chemotherapy (5-fluorouracil) treatment resulted in acute increases in transforming growth factor-a, amphiregulin, and heregulin ligand shedding in vitro and in vivo that correlated with significantly increased ADAM-17 activity. Small interfering RNA–mediated silencing and pharmacologic inhibition confirmed that ADAM-17 was the principal ADAM involved in this prosurvival response. Furthermore, overexpression of ADAM-17 significantly decreased the effect of chemotherapy on tumor growth and apoptosis. Mechanistically, we found that ADAM-17 not only regulated phosphorylation of human epidermal receptors but also increased the activity of a number of other growth factor receptors, such as insulin-like growth factor-I receptor and vascular endothelial growth factor receptor.
Conclusions: Chemotherapy acutely activates ADAM-17, which results in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. Thus, pharmacologic inhibition of ADAM-17 in conjunction with chemotherapy may have therapeutic potential for the treatment of CRC.
Resumo:
Tiamulin (TIA) is an antimicrobial veterinary drug administered subtherapeutically to prevent swine dysentery and pneumonia. Due to its stability, crystalline structure, and water-soluble properties, TIA is a prime candidate for environmental monitoring. However, there are currently no screening methods available for TIA in environmental matrices, such as grass or ground water. In this paper, the development and validation of a screening method using optical SPR biosensor technology is presented. A solvent extraction was carried out on samples prior to analysis using the Biacore Q instrument. The limit of detection for the assay in grass and ground water was 10.8 ng/g and 2.4 ng/ml, respectively. In addition, the assay was shown to be of an acceptable standard with regard to both accuracy and reproducibility.
Resumo:
Chloramphenicol is a broad-spectrum antibiotic shown to have specific activity against a wide variety of organisms that are causative agents of several disease conditions in domestic animals. Chloramphenicol has been banned for use in food-producing animals for its serious adverse toxic effects in humans. Due to the harmful effects of chloramphenicol residues livestock products should be free of any traces of these residues. Several analytical methods are available for chloramphenicol analysis but sensitive methods are required in order to ensure that no traces of chloramphenicol residues are present in edible animal products. In order to prevent the illegal use of chloramphenicol, regulatory control of its residues in food of animal origin is essential. A competitive enzyme-linked immunosorbent assay for chloramphenicol has been locally developed and optimized for the detection of chloramphenicol in sheep serum. In the assay, chloramphenicol in the test samples and that in chloramphenicol-horseradish peroxidase conjugate compete for antibodies raised against the drug in camels and immobilized on a microtitre plate. Tetramethylbenzidine-hydrogen peroxide (TMB/H2O2) is used as chromogen-substrate system. The assay has a detection limit of 0.1 ng/mL of serum with a high specificity for chloramphenicol. Cross-reactivity with florfenicol, thiamphenicol, penicillin, tetracyclines and sulfamethazine was not observed. The assay was able to detect chloramphenicol concentrations in normal sheep serum for at least 1 week after intramuscular injection with the drug at a dose of 25 mg/kg body weight (b.w.). The assay can be used as a screening tool for chloramphenicol use in animals.
Resumo:
There are currently only two predictive markers of response to chemotherapy for breast cancer in routine clinical use, namely the Estrogen receptor-alpha and the HER2 receptor. The breast and ovarian cancer susceptibility gene BRCA1 is an important genetic factor in hereditary breast and ovarian cancer and there is increasing evidence of an important role for BRCA1 in the sporadic forms of both cancer types. Our group and numerous others have shown in both preclinical and clinical studies that BRCA1 is an important determinant of chemotherapy responses in breast cancer. In this review we will outline the current understanding of the role of BRCA1 as a determinant of response to DNA damaging and microtubule damaging chemotherapy. We will then discuss how the known functions of this multifaceted protein may provide mechanistic explanations for its role in chemotherapy responses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A novel approach has been developed to determine ranitidine in paediatric samples using dried blood spots (DBS) on Guthrie cards (Whatman 903). A selective and sensitive HPLC-MS/MS assay has been developed and validated using small volumes of blood (30µl). A 6mm disc was punched from each DBS and extracted with methanolic solution of the internal standard (IS) nizatidine. This was further subjected to solid phase extraction (SPE), followed by reversed phase HPLC separation, using a XBridge™ C18 column and mobile phase 10mM ammonium acetate/methanol (98:2 v/v) with a flow rate of 0.3mL/min. This was combined with multiple reaction monitoring (MRM) mass detection using electrospray ionisation (ESI). The calibration curve for ranitidine was found linear over the range 10-500ng/mL (r=0.996). The limit of quantification (LOQ) of the method was validated at 10ng/mL. Accuracy and precision values for within and between days were
Resumo:
The ectrodactyly-ectodermal dysplasiaclefting syndrome is a rare autosomal dominant disorder caused by heterozygous mutations in the p63 gene, a transcription factor belonging to the p53 family. The majority of cases of ectrodactyly-ectodermal dysplasia syndrome are caused by de novo mutations and are therefore sporadic in approximately 60% of patients. The substitution of arginine to histidine (R279H), due to a c.836G>A mutation in exon 7 of the p63 gene, represents 55% of the identified mutations and is considered a mutational hot spot. A quantitative and sensitive real-time PCR was performed to quantify both wild-type and R279H alleles in DNA extracted from peripheral blood and RNA from cultured epithelial cells. Standard curves were constructed for both wild-type and mutant probes. The sensitivity of the assay was determined by generating serial dilutions of the DNA isolated from heterozygous patients (50% of alleles mutated) with wild-type DNA, thus obtaining decreasing percentages of p63 R279H mutant allele (50%, 37.5%, 25%, 12.5%, 10%, 7.5%, 5%, 2.5%, and 0.0%). The assay detected up to 1% of the mutant p63. The high sensitivity of the assay is of particular relevance to prenatal diagnosis and counseling and to detect therapeutic effects of drug treatment or gene therapy aimed at reducing the amount of mutated p63. © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Resumo:
Techniques for screening porcine samples for antimicrobial residues in the EU usually involve analysis of samples taken post slaughter, and are either time consuming or expensive. Some of the positive test results at this screening stage could be avoided by allowing the animal sufficient withdrawal time following drug treatment. A method is described that can detect the presence of five major antibiotics in porcine urine at concentrations below 1 mu g ml(-1) for each of the compounds. The test uses Bacillus subtilis, which is already widely employed in antimicrobial inhibition assays, and when combined with a colorimetric substrate, p-nitrophenyl-beta-D-glucopyranoside, can detect inhibitory substances within an assay time of four and a half hours. The method, which uses microtitre plate technology, could be developed into a convenient test kit for use at farm level to determine whether animals were still excreting antimicrobials in their urine prior to their submission for slaughter.
Resumo:
The ProSafeBeef project studied the prevalence of residues of anthelmintic drugs used to control parasitic worms and fluke in beef cattle in Ireland. Injured (casualty) cattle may enter the human food chain under certain conditions, verified by an attending veterinarian and the livestock keeper. An analytical survey was conducted to determine if muscle from casualty cattle contained a higher prevalence of anthelmintic drug residues than healthy (full slaughter weight) cattle as a result of possible non-observance of complete drug withdrawal periods. A validated analytical method based on matrix solid-phase dispersive extraction (QuEChERS) and ultra-performance liquid chromatography-tandem mass spectrometry was used to quantify 37 anthelmintic drugs and metabolites in muscle (assay decision limits, CCa, 0.15-10.2 µg kg -1). Of 199 control samples of beef purchased in Irish shops, 7% contained detectable anthelmintic drug residues but all were compliant with European Union Maximum Residue Limits (MRL). Of 305 muscle samples from injured cattle submitted to abattoirs in Northern Ireland, 17% contained detectable residues and 2% were non-compliant (containing either residues at concentrations above the MRL or residues of a compound unlicensed for use in cattle). Closantel and ivermectin were the most common residues, but a wider range of drugs was detected in muscle of casualty cattle than in retail beef. These data suggest that specific targeting of casualty cattle for testing for anthelmintic residues may be warranted in a manner similar to the targeted testing for antimicrobial compounds often applied in European National Residues Surveillance Schemes. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Anthelmintic drugs are widely used to control parasitic infections in cattle. The ProSafeBeef project addressed the need for data on the exposure of European consumers of beef to potentially harmful drug residues. A novel analytical method based on matrix solid-phase dispersive extraction and ultra-performance liquid chromatography-tandem mass spectrometry was validated for 37 anthelmintic drugs and metabolites in muscle (assay decision limits, CCa, = 0.15-10.2 µg kg -1). Seven European countries (France, Spain, Slovenia, Ireland, Italy, Belgium and Portugal) participated in a survey of retail beef purchased in local shops. Of 1061 beef samples analysed, 26 (2.45%) contained detectable residues of anthelmintic drugs (0.2-171 µg kg -1), none above its European Union maximum residue limit (MRL) or action level. Residues detected included closantel, levamisole, doramectin, eprinomectin, moxidectin, ivermectin, albendazole and rafoxanide. In a risk assessment applied to mean residue concentrations across all samples, observed residues accounted for less than 0.1% of the MRL for each compound. An exposure assessment based on the consumption of meat at the 99th percentile of consumption of adults in 14 European countries demonstrated that beef accounted for less than 0.02% of the acceptable daily intake for each compound in each country. This study is the first of its kind to apply such a risk-based approach to an extensive multi-residue survey of veterinary drug residues in food. It has demonstrated that the risk of exposure of the European consumer to anthelmintic drug residues in beef is negligible, indicating that regulation and monitoring is having the desired effect of limiting residues to non-hazardous concentrations. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Pulmonary disease is the main cause of morbidity and mortality in cystic fibrosis (CF) suffers, with multidrug-resistant Pseudomonas aeruginosa and Burkholderia cepacia complex as problematic pathogens in terms of recurrent and unremitting infections. Novel treatment of pulmonary infection is required to improve the prognosis and quality of life for chronically infected patients. Photodynamic antimicrobial chemotherapy (PACT) is a treatment combining exposure to a light reactive drug, with light of a wavelength specific for activation of the drug, in order to induce cell death of bacteria. Previous studies have demonstrated the susceptibility of CF pathogens to PACT in vitro. However, for the treatment to be of clinical use, light and photosensitizer must be able to be delivered successfully to the target tissue. This preliminary study assessed the potential for delivery of 635 nm light and methylene blue to the lung using an ex vivo and in vitro lung model. Using a fibre-optic light delivery device coupled to a helium-neon laser, up to 11% of the total light dose penetrated through full thickness pulmonary parenchymal tissue, which indicates potential for multiple lobe irradiation in vivo. The mass median aerodynamic diameter (MMAD) of particles generated via methylene blue solution nebulisation was 4.40 µm, which is suitable for targeting the site of infection within the CF lung. The results of this study demonstrate the ability of light and methylene blue to be delivered to the site of infection in the CF lung. PACT remains a viable option for selective killing of CF lung pathogens.
Resumo:
SUMMARY A study was carried out to investigate whether the action of triclabendazole sulphoxide (TCBZ.SO) against the liver fluke, Fasciola hepatica is altered by inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible fluke isolates were used for this in vitro study and the Pgp inhibitor selected was R(+)-verapamil [R(+)-VPL]. For experiments with the Oberon isolate, flukes were incubated for 24 h with either R(+)-VPL (1×10-4 m) on its own, TCBZ.SO (15 µg mL-1) alone, a combination of R(+)-VPL (1×10-4 m) plus TCBZ.SO (15 µg mL-1), TCBZ.SO (50 µg mL-1) on its own, or a combination of TCBZ.SO (50 µg mL-1) plus R(+)-VPL (1×10-4 m). They were also incubated in TCBZ.SO (50 µg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive; and in TCBZ.SO (50 µg mL-1) alone for a time to match that of the combination inactivity time. Flukes from the Cullompton isolate were treated with either TCBZ.SO (50 µg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive, or with TCBZ.SO (50 µg mL-1) alone time-matched to the combination inactivity time. Morphological changes resulting from drug treatment and following Pgp inhibition were assessed by means of scanning electron microscopy. Incubation in R(+)-VPL alone had a minimal effect on either isolate. TCBZ.SO treatment had a relatively greater impact on the TCBZ-susceptible Cullompton isolate. When R(+)-VPL was combined with TCBZ.SO in the incubation medium, however, the surface disruption to both isolates was more severe than that seen after TCBZ.SO treatment alone; also, the time taken to reach inactivity was shorter. More significantly, though, the potentiation of drug activity was greater in the Oberon isolate; also, it was more distinct at the higher concentration of TCBZ.SO. So, the Oberon isolate appears to be particularly sensitive to efflux pump inhibition. The results of this study suggest that enhanced drug efflux in the Oberon isolate may be involved in the mechanism of resistance to TCBZ.
Resumo:
A new generation of water soluble tetrazolium salts have recently become available and in this study we compared a colorimetric assay developed using one of these salts, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2, 4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8), with a previously developed 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) colorimetric assay to determine which agent is most suitable for use as a colorimetric indicator in susceptibility testing. The MICs of 6 antibiotics were determined for 33 staphylococci using both colorimetric assays and compared with those obtained using the British Society for Antimicrobial Chemotherapy reference broth microdilution method. Absolute categorical agreement between the reference and test methods ranged from 79% (cefuroxime) to 100% (vancomycin) for both assays. No minor or major errors occurred using either assay with very major errors ranging from zero (vancomycin) to seven (cefuroxime). Analysis of the distribution of differences in the log2 dilution MIC results revealed overall agreement, within the accuracy limits of the standard test (± 1 log2 dilution), using the XTT and WST-8 assays of 98% and 88%, respectively. Further studies on 31 ESBL-producing isolates were performed using the XTT method with absolute categorical agreement ranging from 87% (nitrofurantoin) to 100% (ofloxacin and meropenem). No errors were noted for either ofloxacin or meropenem with overall agreement of 91%. The data suggests that XTT is more reliable and accurate than WST-8 for use in a rapid antimicrobial susceptibility test.
Resumo:
Although trastuzumab (Herceptin) has substantially improved the overall survival of patients with mammary carcinomas, even initially well-responding tumors often become resistant. Because natural killer (NK) cell-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) is thought to contribute to the therapeutic effects of trastuzumab, we have established a cell culture system to select for ADCC-resistant SK-OV-3 ovarian cancer and MCF7 mammary carcinoma cells. Ovarian cancer cells down-regulated HER2 expression, resulting in a more resistant phenotype. MCF7 breast cancer cells, however, failed to develop resistance in vitro. Instead, treatment with trastuzumab and polyclonal NK cells resulted in the preferential survival of individual sphere-forming cells that displayed a CD44(high)CD24(low) "cancer stem cell-like" phenotype and expressed significantly less HER2 compared with non-stem cells. Likewise, the CD44(high)CD24(low) population was also found to be more immunoresistant in SK-BR3, MDA-MB231, and BT474 breast cancer cell lines. When immunoselected MCF7 cells were then re-expanded, they mostly lost the observed phenotype to regenerate a tumor cell culture that displayed the initial HER2 surface expression and ADCC-susceptibility, but was enriched in CD44(high)CD24(low) cancer stem cells. This translated into increased clonogenicity in vitro and tumorigenicity in vivo. Thus, we provide evidence that the induction of ADCC by trastuzumab and NK cells may spare the actual tumor-initiating cells, which could explain clinical relapse and progress. Moreover, our observation that the "relapsed" in vitro cultures show practically identical HER2 surface expression and susceptibility toward ADCC suggests that the administration of trastuzumab beyond relapse might be considered, especially when combined with an immune-stimulatory treatment that targets the escape variants.
Resumo:
In this study, we report the antimicrobial planktonic and biofilm kill kinetics of ultrashort cationic lipopeptides previously demonstrated by our group to have a minimum biofilm eradication concentration (MBEC) in the microgram per mL (μg/mL) range against clinically relevant biofilm-forming micro-organisms. We compare the rate of kill for the most potent of these lipopeptides, dodecanoic (lauric) acid-conjugated C12-Orn-Orn-Trp-Trp-NH2 against the tetrapeptide amide H-Orn-Orn-Trp-Trp-NH2 motif and the amphibian peptide Maximin-4 via a modification of the MBEC Assay™ for Physiology & Genetics (P&G). Improved antimicrobial activity is achieved upon N-terminal lipidation of the tetrapeptide amide. Increased antimicrobial potency was demonstrated against both planktonic and biofilm forms of Gram-positive micro-organisms. We hypothesize rapid kill to be achieved by targeting of microbial membranes. Complete kill against established 24-h Gram-positive biofilms occurred within 4 h of exposure to C12-OOWW-NH2 at MBEC values [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 15.63 μg/mL] close to the values for the planktonic minimum inhibitory concentration (MIC) [methicillin-resistant Staphylococcus epidermidis (ATCC 35984): 1.95 μg/mL]. Such rapid kill, especially against sessile biofilm forms, is indicative of a reduction in the likelihood of resistant strains developing with the potential for quicker resolution of pathogenic infection. Ultrashort antimicrobial lipopeptides have high potential as antimicrobial therapy.