29 resultados para Microcistina-LR


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater and brackish microalgal toxins, such as microcystins, cylindrospermopsins, paralytic toxins, anatoxins or other neurotoxins are produced during the overgrowth of certain phytoplankton and benthic cyanobacteria, which includes either prokaryotic or eukaryotic microalgae. Although, further studies are necessary to define the biological role of these toxins, at least some of them are known to be poisonous to humans and wildlife due to their occurrence in these aquatic systems. The World Health Organization (WHO) has established as provisional recommended limit 1 μg of microcystin-LR per liter of drinking water. In this work we present a microsphere-based multi-detection method for five classes of freshwater and brackish toxins: microcystin-LR (MC-LR), cylindrospermopsin (CYN), anatoxin-a (ANA-a), saxitoxin (STX) and domoic acid (DA). Five inhibition assays were developed using different binding proteins and microsphere classes coupled to a flow-cytometry Luminex system. Then, assays were combined in one method for the simultaneous detection of the toxins. The IC50's using this method were 1.9 ± 0.1 μg L−1 MC-LR, 1.3 ± 0.1 μg L−1 CYN, 61 ± 4 μg L−1 ANA-a, 5.4 ± 0.4 μg L−1 STX and 4.9 ± 0.9 μg L−1 DA. Lyophilized cyanobacterial culture samples were extracted using a simple procedure and analyzed by the Luminex method and by UPLC–IT-TOF-MS. Similar quantification was obtained by both methods for all toxins except for ANA-a, whereby the estimated content was lower when using UPLC–IT-TOF-MS. Therefore, this newly developed multiplexed detection method provides a rapid, simple, semi-quantitative screening tool for the simultaneous detection of five environmentally important freshwater and brackish toxins, in buffer and cyanobacterial extracts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context Medical students can have difficulty in distinguishing left from right. Many infamous medical errors have occurred when a procedure has been performed on the wrong side, such as in the removal of the wrong kidney. Clinicians encounter many distractions during their work. There is limited information on how these affect performance. 
Objectives Using a neuropsychological paradigm, we aim to elucidate the impacts of different types of distraction on left–right (LR) discrimination ability. 
Methods Medical students were recruited to a study with four arms: (i) control arm (no distraction); (ii) auditory distraction arm (continuous ambient ward noise); (iii) cognitive distraction arm (interruptions with clinical cognitive tasks), and (iv) auditory and cognitive distraction arm. Participants’ LR discrimination ability was measured using the validated Bergen Left–Right Discrimination Test (BLRDT). Multivariate analysis of variance was used to analyse the impacts of the different forms of distraction on participants’ performance on the BLRDT. Additional analyses looked at effects of demographics on performance and correlated participants’ self-perceived LR discrimination ability and their actual performance. 
Results A total of 234 students were recruited. Cognitive distraction had a greater negative impact on BLRDT performance than auditory distraction. Combined auditory and cognitive distraction had a negative impact on performance, but only in the most difficult LR task was this negative impact found to be significantly greater than that of cognitive distraction alone. There was a significant medium-sized correlation between perceived LR discrimination ability and actual overall BLRDT performance. 
Conclusions
Distraction has a significant impact on performance and multifaceted approaches are required to reduce LR errors. Educationally, greater emphasis on the linking of theory and clinical application is required to support patient safety and human factor training in medical school curricula. Distraction has the potential to impair an individual's ability to make accurate LR decisions and students should be trained from undergraduate level to be mindful of this.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microcystins are a family of hepatotoxic peptides produced by freshwater cyanobacteria. Their occurrence in drinking water is of concern since chronic exposure to these toxins causes tumor promotion. It is therefore essential to establish a reliable treatment strategy that will ensure their removal from potable water. We have previously described the rapid destruction of microcystin-LR using TiO2 photocatalysis, however, since there are at least 70 microcystin variants it is essential that the destruction of a number of microcystins be evaluated. In this study the dark adsorption and destruction of four microcystins was followed over a range of pH. All four microcystins were destroyed although the efficiency of their removal varied. The two more hydrophobic microcystins (-LW and -LF) were found to have high dark adsorption (98 and 91% at pH 4) in contrast to microcystin-RR, which was found to have almost no (only 2-3%) dark adsorption across all pH. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TiO2 photocatalysis has been used to destroy microcystin-LR in aqueous solution. The destruction of this toxin was monitored by HPLC, and the disappearance was accompanied by the appearance of seven UV detectable compounds. Spectral analysis revealed that some of these compounds retained spectra similar to the parent compound suggesting that the Adda moiety, thought to be responsible for the characteristic spectrum, remained intact whereas the spectra of some of the other products was more radically altered. Six of the seven observed reaction products did not appear to undergo further degradation during prolonged photocatalysis (100 min). The degree to which microcystin-LR was mineralized by photocatalytic oxidation was determined. Results indicated that less than 10% mineralization occurred. Mass spectral analysis of the photocatalyzed microcystin-LR allowed tentative characterization of the reaction process and products. Reduction in toxicity due to the photocatalytic oxidation was evaluated using an invertebrate bioassay, which demonstrated that the disappearance of microcystin-LR was paralleled by a reduction in toxicity. These findings suggest that photocatalytic destruction of microcystins may be a suitable method for the removal of these potentially hazardous compounds from drinking water.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacterial (blue-green algal) toxins are extremely toxic naturally occurring substances which display hepato- and neurotoxic behaviour (1, 2). In this paper we report the application of titanium dioxide photocatalysis for the destruction of two of these compounds, microcystin-LR and anatoxin-a. The destruction of microcystin appears to follow Langmuir-Hinshelwood kinetics although a discrepancy was observed between adsorption constants determined for the photocatalytic process with those obtained from dark isotherms. A square root dependence between illumination intensity and rate of microcystin destruction was noted. When the destruction was performed in the presence of the naturally occurring pigment it appeared that the pigment also contributes to the destruction of the toxin. Toxicity studies on the photocatalysed toxin solutions indicates that the toxicity is substantially reduced within 30 min photolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study was to verify clinical target volume-planning target volume (CTV-PTV) margins in single vocal cord irradiation (SVCI) of T1a larynx tumors and characterize inter- and intrafraction target motion.

METHODS AND MATERIALS: For 42 patients, a single vocal cord was irradiated using intensity modulated radiation therapy at a total dose of 58.1 Gy (16 fractions × 3.63 Gy). A daily cone beam computed tomography (CBCT) scan was performed to online correct the setup of the thyroid cartilage after patient positioning with in-room lasers (interfraction motion correction). To monitor intrafraction motion, CBCT scans were also acquired just after patient repositioning and after dose delivery. A mixed online-offline setup correction protocol ("O2 protocol") was designed to compensate for both inter- and intrafraction motion.

RESULTS: Observed interfraction, systematic (Σ), and random (σ) setup errors in left-right (LR), craniocaudal (CC), and anteroposterior (AP) directions were 0.9, 2.0, and 1.1 mm and 1.0, 1.6, and 1.0 mm, respectively. After correction of these errors, the following intrafraction movements derived from the CBCT acquired after dose delivery were: Σ = 0.4, 1.3, and 0.7 mm, and σ = 0.8, 1.4, and 0.8 mm. More than half of the patients showed a systematic non-zero intrafraction shift in target position, (ie, the mean intrafraction displacement over the treatment fractions was statistically significantly different from zero; P<.05). With the applied CTV-PTV margins (for most patients 3, 5, and 3 mm in LR, CC, and AP directions, respectively), the minimum CTV dose, estimated from the target displacements observed in the last CBCT, was at least 94% of the prescribed dose for all patients and more than 98% for most patients (37 of 42). The proposed O2 protocol could effectively reduce the systematic intrafraction errors observed after dose delivery to almost zero (Σ = 0.1, 0.2, 0.2 mm).

CONCLUSIONS: With adequate image guidance and CTV-PTV margins in LR, CC, and AP directions of 3, 5, and 3 mm, respectively, excellent target coverage in SVCI could be ensured.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To compare the use of a generic molecular assay to 'standard' investigations used to assist the diagnosis of late onset bacterial sepsis in very low birth weight infants (VLBW, <1500g).

METHODS: VLBW infants, greater than 48 hours of age, who were clinically suspected to have sepsis were investigated using standard tests (full blood count, C-reactive protein (at presentation) and blood culture), in addition, blood was taken for a universal molecular assay (16S rRNA reverse transcriptase PCR) for comparison. Clinical data were recorded during the suspected infection episode. A validated sepsis score (NEO-KISS) was used to retrospectively determine the presence of sepsis (independent of blood culture). The performance of each of the tests were compared by sensitivity, specificity, positive/negative likihood ratios (+/-LR) and postive/negative predictive values (PPV/NPV).

RESULTS: Sixty-five babies with suspected clinical sepsis were prospectively included. The performance indicators are presented with 95% confidence limits. For the detection of bacteria, blood culture had sensitivity of 0.57 (0.34-0.78), specificity of 0.45 (0.30-0.61); +LR of 1.05 (0.66-1.66) and-LR of 0.94 (0.52-1.7); PPV of 33.3 (18.56-50.97) and NPV of 68.97 (49.17-87.72). Serum CRP had sensitivity of 0.92 (0.64-1) and specificity of 0.36 (0.17-0.59); +LR of 1.45 (1-2.1) and-LR of 0.21 (0.03-1.5); PPV of 44.46 (26.6-66.6) and NPV of 88.9 (51.8-99.7). The universal molecular assay had sensitivity of 0.76 (0.53-0.92), specificity of 0.95 (0.85-0.99); +LR of 16.8 (4.2-66.3) and-LR of 0.25 (0.1-0.5); PPV of 88.9 (65.3-98.6) and NPV of 89.4 (76.9-96.5).

CONCLUSIONS: In VLBW infants this universal molecular assay performed better in the diagnosis of late onset sepsis (LOS) than blood culture and CRP. Further development is required to explore and improve the performance of the assay in real-time diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most popular techniques of generating classifier ensembles is known as stacking which is based on a meta-learning approach. In this paper, we introduce an alternative method to stacking which is based on cluster analysis. Similar to stacking, instances from a validation set are initially classified by all base classifiers. The output of each classifier is subsequently considered as a new attribute of the instance. Following this, a validation set is divided into clusters according to the new attributes and a small subset of the original attributes of the instances. For each cluster, we find its centroid and calculate its class label. The collection of centroids is considered as a meta-classifier. Experimental results show that the new method outperformed all benchmark methods, namely Majority Voting, Stacking J48, Stacking LR, AdaBoost J48, and Random Forest, in 12 out of 22 data sets. The proposed method has two advantageous properties: it is very robust to relatively small training sets and it can be applied in semi-supervised learning problems. We provide a theoretical investigation regarding the proposed method. This demonstrates that for the method to be successful, the base classifiers applied in the ensemble should have greater than 50% accuracy levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past few decades, there has been an increased frequency and duration of cyanobacterial Harmful Algal Blooms (HABs) in freshwater systems globally. These can produce secondary metabolites called cyanotoxins, many of which are hepatotoxins, raising concerns about repeated exposure through ingestion of contaminated drinking water or food or through recreational activities such as bathing/ swimming. An ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) multi-toxin method has been developed and validated for freshwater cyanotoxins; microcystins-LR, -YR, -RR, -LA, -LY and -LF, nodularin, cylindrospermopsin, anatoxin-a and the marine diatom toxin domoic acid. Separation was achieved in around 9 min and dual SPE was incorporated providing detection limits of between 0.3 and 5.6 ng/L of original sample. Intra- and inter-day precision analysis showed relative
standard deviations (RSD) of 1.2–9.6% and 1.3–12.0% respectively. The method was applied to the analysis of aquatic samples (n = 206) from six European countries. The main class detected were the hepatotoxins; microcystin-YR (n = 22), cylindrospermopsin (n = 25), microcystin-RR (n = 17), microcystin-LR (n = 12), microcystin-LY (n = 1), microcystin-LF (n = 1) and nodularin (n = 5). For microcystins, the levels detected ranged from 0.001 to 1.51 mg/L, with two samples showing combined levels above the guideline set by the WHO of 1 mg/L for microcystin-LR. Several samples presented with multiple toxins indicating the potential for synergistic effects and possibly enhanced toxicity. This is the first published pan European survey of freshwater bodies for multiple biotoxins, including two identified for the first time; cylindrospermopsin in Ireland and nodularin in Germany, presenting further incentives for improved monitoring and development of strategies to mitigate human exposure.