23 resultados para Medium-sized electronics companies
Resumo:
Earth pressure balanced (EPB) full face tunneling machines have experienced a remarkable increase in the number of applications throughout the world due to both mechanical developments and a more effective use of additives to condition the ground. Conditioning modifies the mechanical and hydraulic properties of a soil by making it suitable for the pressure control in the bulk chamber and extraction with the screw conveyor. The extraction system plays a fundamental role during the EPB operations particularly for a correct application of the face pressure. Despite the extensive use of the EPB technique, little knowledge exists concerning the understanding of the behavior of conditioned soil, particularly for noncohesive ground (sand and gravel). This paper presents and describes a prototype laboratory device, which simulates the extraction of the ground from a pressurized tank with a screw conveyor. The results of a preliminary test program carried out on a medium sized sand show that the prototype device is efficient in verifying the effects of foam for an optimal use in EPB conditioning. © 2007 ASCE.
Resumo:
Urban areas are pivotal to global adaptation and mitigation efforts. But how do cities actually perform in terms of climate change response? This study sheds light on the state of urban climate change adaptation and mitigation planning across Europe. Europe is an excellent test case given its advanced environmental policies and high urbanization. We performed a detailed analysis of 200 large and medium-sized cities across 11 European countries and analysed the cities' climate change adaptation and mitigation plans. We investigate the regional distribution of plans, adaptation and mitigation foci and the extent to which planned greenhouse gas (GHG) reductions contribute to national and international climate objectives. To our knowledge, it is the first study of its kind as it does not rely on self-assessment (questionnaires or social surveys). Our results show that 35 % of European cities studied have no dedicated mitigation plan and 72 % have no adaptation plan. No city has an adaptation plan without a mitigation plan. One quarter of the cities have both an adaptation and a mitigation plan and set quantitative GHG reduction targets, but those vary extensively in scope and ambition. Furthermore, we show that if the planned actions within cities are nationally representative the 11 countries investigated would achieve a 37 % reduction in GHG emissions by 2050, translating into a 27 % reduction in GHG emissions for the EU as a whole. However, the actions would often be insufficient to reach national targets and fall short of the 80 % reduction in GHG emissions recommended to avoid global mean temperature rising by 2 °C above pre-industrial levels. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Mechanical swivel seat adaptations are a key aftermarket disability modification to any small-to medium-sized passenger vehicle. However, the crashworthiness of these devices is currently unregulated and the existing 20g dynamic sled testing approach is prohibitively expensive for prototype assessment purposes. In this paper, an alternative quasi-static test method for swivel seat assessment is presented, and two different approaches (free-body diagram and multibody modelling) validated through published experimental data are developed to determine the appropriate loading conditions to apply in the quasi-static testing.Results show the two theoretical approaches can give similar results for estimating the quasi-static loading conditions, and this depends on the seatbelt configuration. Application of the approach to quasi-static testing of both conventional seats and those with integrated seat belts showed the approach to be successful and easy to apply. It is proposed that this method be used by swivel seat designers to assess new prototypes prior to final validation via the traditional 20g sled test.
Resumo:
As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional one can derive a charge self consistent tight binding theory. In this paper we have used this to describe a polarizable ion tight binding model which has the benefit of treating charge transfer in point multipoles. This admits a ready description of ionic polarizability and crystal field splitting. It is necessary in constructing such a model to find a number of parameters that mimic their more exact counterparts in the density functional theory. We describe in detail how this is done using a combination of intuition, exact analytical fitting, and a genetic optimization algorithm. Having obtained model parameters we show that this constitutes a transferable scheme that can be applied rather universally to small and medium sized organic molecules. We have shown that the model gives a good account of static structural and dynamic vibrational properties of a library of molecules, and finally we demonstrate the model's capability by showing a real time simulation of an enolization reaction in aqueous solution. In two subsequent papers, we show that the model is a great deal more general in that it will describe solvents and solid substrates and that therefore we have created a self consistent quantum mechanical scheme that may be applied to simulations in heterogeneous catalysis.
Resumo:
Context Medical students can have difficulty in distinguishing left from right. Many infamous medical errors have occurred when a procedure has been performed on the wrong side, such as in the removal of the wrong kidney. Clinicians encounter many distractions during their work. There is limited information on how these affect performance.
Objectives Using a neuropsychological paradigm, we aim to elucidate the impacts of different types of distraction on left–right (LR) discrimination ability.
Methods Medical students were recruited to a study with four arms: (i) control arm (no distraction); (ii) auditory distraction arm (continuous ambient ward noise); (iii) cognitive distraction arm (interruptions with clinical cognitive tasks), and (iv) auditory and cognitive distraction arm. Participants’ LR discrimination ability was measured using the validated Bergen Left–Right Discrimination Test (BLRDT). Multivariate analysis of variance was used to analyse the impacts of the different forms of distraction on participants’ performance on the BLRDT. Additional analyses looked at effects of demographics on performance and correlated participants’ self-perceived LR discrimination ability and their actual performance.
Results A total of 234 students were recruited. Cognitive distraction had a greater negative impact on BLRDT performance than auditory distraction. Combined auditory and cognitive distraction had a negative impact on performance, but only in the most difficult LR task was this negative impact found to be significantly greater than that of cognitive distraction alone. There was a significant medium-sized correlation between perceived LR discrimination ability and actual overall BLRDT performance.
Conclusions
Distraction has a significant impact on performance and multifaceted approaches are required to reduce LR errors. Educationally, greater emphasis on the linking of theory and clinical application is required to support patient safety and human factor training in medical school curricula. Distraction has the potential to impair an individual's ability to make accurate LR decisions and students should be trained from undergraduate level to be mindful of this.
Resumo:
The starfish, Asterias rubens, is widely distributed throughout the northern hemisphere and is an important predator on benthic mussel (Mytilus edulis) beds. Whilst several studies have examined how the size of individuals determines this predator–prey relationship, less is known about how the physiological condition of the prey (mussels) and the extent of their fouling may alter these relationships. Such issues are of particular interest to those working within the benthic mussel cultivation industry to inform best management practice and to help minimise losses during the aquaculture process. The potential role of starfish in the removal of epibiotic barnacles from mussels, the presence of which increases processing costs within the industry, is also of interest. We tested whether stressing mussels by aerial exposure for 48 h and whether the extent of barnacle fouling on mussels affected the feeding rates of three different size classes of starfish feeding on two different size classes of mussels. Feeding rates on stressed and unstressed mussels were similar for each starfish–mussel size combination. Barnacle fouling reduced the feeding rate of medium-sized starfish on larger-sized mussels. We also observed starfish, of all size classes, preying directly on the epibiotic barnacles on mussels, however, feeding rates were low and considered unlikely to reduce the extent of fouling on mussels. Our findings show that the predator–prey relationship between starfish and mussels does not differ between unstressed mussels and those experimentally stressed by aerial exposure for 48 h so that this level of stress is unlikely to affect predation rates by A. rubens following relaying in commercial operations. Whilst barnacle fouling suppressed predation rates in one of our experimental treatments, it does not appear that fouling by barnacles would provide a significant refuge from predation for the majority of mussels in benthic aquaculture stocks. Instead we found the size relationship between starfish and mussels was more important in determining predation rates. Starfish are also unlikely to help reduce barnacle fouling on cultured mussels by preying solely on fouling barnacles and the need to control starfish predation during culture remains.
Resumo:
Resting metabolic rate (RMR) is a measure of the minimum energy requirements of an animal at rest, and can give an indication of the costs of somatic maintenance. We measured RMR of free-ranging European badgers (Meles meles) to determine whether differences were related to sex, age and season. Badgers were captured in live-traps and placed individually within a metabolic chamber maintained at 20 ± 1°C. Resting metabolic rate was determined using an open-circuit respirometry system. Season was significantly correlated with RMR, but no effects of age or sex were detected. Summer RMR values were significantly higher than winter values (mass-adjusted mean ± standard error: 2366 ± 70 kJ⋅d-1; 1845 ± 109 kJ⋅d-1, respectively), with the percentage difference being 24.7%. While under the influence of anaesthesia, RMR was estimated to be 25.5% lower than the combined average value before administration, and after recovery from anaesthesia. Resting metabolic rate during the autumn and winter was not significantly different to allometric predictions of basal metabolic rate for mustelid species weighing 1 kg or greater, but badgers measured in the summer had values that were higher than predicted. Results suggest that a seasonal reduction in RMR coincides with apparent reductions in physical activity and body temperature as part of the overwintering strategy ('winter lethargy') in badgers. This study contributes to an expanding dataset on the ecophysiology of medium-sized carnivores, and emphasises the importance of considering season when making predictions of metabolic rate.
Resumo:
The positive relationships between urban green space and health have been well documented. Little is known, however, about the role of residents’ emotional attachment to local green spaces in these relationships, and how attachment to green spaces and health may be promoted by the availability of accessible and usable green spaces. The present research aimed to examine the links between self-reported health, attachment to green space, and the availability of accessible and usable green spaces. Data were collected via paper-mailed surveys in two neighborhoods (n = 223) of a medium-sized Dutch city in the Netherlands. These neighborhoods differ in the perceived and objectively measured accessibility and usability of green spaces, but are matched in the physically available amount of urban green space, as well as in demographic and socio-economic status, and housing conditions. Four dimensions of green space attachment were identified through confirmatory factor analysis: place dependence, affective attachment, place identity and social bonding. The results show greater attachment to local green space and better self-reported mental health in the neighborhood with higher availability of accessible and usable green spaces. The two neighborhoods did not differ, however, in physical and general health. Structural Equation Modelling confirmed the neighborhood differences in green space attachment and mental health, and also revealed a positive path from green space attachment to mental health. These findings convey the message that we should make green places, instead of green spaces.