52 resultados para Mean field models
Resumo:
We study the spin-1 model on a triangular lattice in the presence of a uniaxial anisotropy field using a cluster mean-field (CMF) approach. The interplay among antiferromagnetic exchange, lattice geometry, and anisotropy forces Gutzwiller mean-field approaches to fail in a certain region of the phase diagram. There, the CMF method yields two supersolid phases compatible with those present in the spin-1/2 XXZ model onto which the spin-1 system maps. Between these two supersolid phases, the three-sublattice order is broken and the results of the CMF approach depend heavily on the geometry and size of the cluster. We discuss the possible presence of a spin liquid in this region.
Resumo:
Positron scattering and annihilation on noble-gas atoms is studied ab initio using many-body theory methods for positron energies below the positronium formation threshold. We show that in this energy range, the many-body theory yields accurate numerical results and provides a near-complete understanding of the positron–noble-gas atom system. It accounts for positron-atom and electron-positron correlations, including the polarization of the atom by the positron and the nonperturbative effect of virtual positronium formation. These correlations have a large influence on the scattering dynamics and result in a strong enhancement of the annihilation rates compared to the independent-particle mean-field description. Computed elastic scattering cross sections are found to be in good agreement with recent experimental results and Kohn variational and convergent close-coupling calculations. The calculated values of the annihilation rate parameter Zeff (effective number of electrons participating in annihilation) rise steeply along the sequence of noble-gas atoms due to the increasing strength of the correlation effects, and agree well with experimental data.
Resumo:
A nonperturbative nonlinear statistical approach is presented to describe turbulent magnetic systems embedded in a uniform mean magnetic field. A general formula in the form of an ordinary differential equation for magnetic field-line wandering (random walk) is derived. By considering the solution of this equation for different limits several new results are obtained. As an example, it is demonstrated that the stochastic wandering of magnetic field-lines in a two-component turbulence model leads to superdiffusive transport, contrary to an existing diffusive picture. The validity of quasilinear theory for field-line wandering is discussed, with respect to different turbulence geometry models, and previous diffusive results are shown to be deduced in appropriate limits.
Resumo:
viii
Executive Summary
The Pathways Project field studies were targeted at improving the understanding of contaminant transport along different hydrological pathways in Irish catchments, including their associated impacts on water quality and river ecology. The contaminants of interest were phosphorus, nitrogen and sediment. The working Pathways conceptual model included overland flow, interflow, shallow groundwater flow, and deep groundwater flow. This research informed the development of a set of Catchment Management Support Tools (CMSTs) comprising an Exploratory Tool, Catchment Characterization Tool (CCT) and Catchment Modelling Tool (CMT) as outlined in Pathways Project Final Reports Volumes 3 and 4.
In order to inform the CMST, four suitable study catchments were selected following an extensive selection process, namely the Mattock catchment, Co. Louth/Meath; Gortinlieve catchment, Co. Donegal; Nuenna catchment, Co. Kilkenny and the Glen Burn catchment, Co. Down. The Nuenna catchment is well drained as it is underlain by a regionally important karstified limestone aquifer with permeable limestone tills and gravels, while the other three catchments are underlain by poorly productive aquifers and low permeability clayey tills, and are poorly drained.
All catchments were instrumented, and groundwater, surface and near-surface water and aquatic ecology were monitored for a period of two years. Intensive water quality sampling during rainfall events was used to investigate the pathways delivering nutrients. The proportion of flow along each pathway was determined using chemical and physical hydrograph separation techniques, supported by numerical modelling.
The outcome of the field studies broadly supported the use of the initial four-pathway conceptual model used in the Pathways CMT (time-variant model). The artificial drainage network was found to be a significant contributing pathway in the poorly drained catchments, at low flows and during peak flows in wet antecedent conditions. The transition zone (TZ), i.e. the broken up weathered zone at the top of the bedrock, was also found to be an important pathway. It was observed to operate in two contrasting hydrogeological scenarios: in groundwater discharge zones the TZ can be regarded as being part of the shallow groundwater pathway, whereas in groundwater recharge zones it behaves more like interflow.
In the catchments overlying poorly productive aquifers, only a few fractures or fracture zones were found to be hydraulically active and the TZ, where present, was the main groundwater pathway. In the karstified Nuenna catchment, the springs, which are linked to conduits as well as to a diffuse fracture network, delivered the majority of the flow. These findings confirm the two-component groundwater contribution from bedrock but suggest that the size and nature of the hydraulically active fractures and the nature of the TZ are the dominant factors at the scale of a stream flow event.
Diffuse sources of nitrate were found to be typically delivered via the subsurface pathways, especially in the TZ and land drains in the poorly productive aquifer catchments, and via the bedrock groundwater in the Nuenna. Phosphorus was primarily transported via overland flow in both particulate and soluble forms. Where preferential flow paths existed in the soil and subsoil, soluble P, and to a lesser extent particulate P, were also transported via the TZ and in drains and ditches. Arable land was found to be the most important land use for
ix
the delivery of sediment, although channel bank and in-stream sources were the most significant in the Glen Burn catchment. Overland flow was found to be the predominant transport sediment pathway in the poorly productive catchments. These findings informed the development of the transport and attenuation equations used in the CCT and CMT. From an assessment of the relationship between physico-chemical and biological conditions, it is suggested that in the Nuenna, Glen Burn and Gortinlieve catchments, a relationship may exist between biological water quality and nitrogen concentrations, as well as with P. In the Nuenna, there was also a relationship between macroinvertebrate status and alkalinity.
Further research is recommended on the transport and delivery of phosphorus in groundwater, the transport and attenuation dynamics in the TZ in different hydrogeological settings and the relationship between macroinvertebrates and co-limiting factors. High resolution temporal and spatial sampling was found to be important for constraining the conceptual understanding of nutrient and sediment dynamics which should also be considered in future studies.
Resumo:
Genetic data from polymorphic microsatellite loci were employed to estimate paternity and maternity in a local population of nine-banded armadillos (Dasypus novemcinctus) in northern Florida. The parentage assessments took advantage of maximum likelihood procedures developed expressly for situations when individuals of neither gender can be excluded a priori as candidate parents. The molecular data for 290 individuals, interpreted alone and in conjunction with detailed biological and spatial information for the population, demonstrate high exclusion probabilities and reasonably strong likelihoods of genetic parentage assignment in many cases; low mean probabilities of successful reproductive contribution to the local population by individual armadillo adults in a given year; and statistically significant microspatial associations of parents and their offspring. Results suggest that molecular assays of highly polymorphic genetic systems can add considerable power to assessments of biological parentage in natural populations even when neither parent is otherwise known.
Resumo:
The sweat bees (Family Halictidae) are a socially diverse taxon in which eusociality has arisen independently numerous times. The obligate, primitively eusocial Lasioglossum malachurum, distributed widely throughout Europe, has been considered the zenith of sociality within halictids. A single queen heads a colony of smaller daughter workers which, by mid-summer, produce new sexuals (males and gynes), of which only the mated gynes overwinter to found new colonies the following spring. We excavated successfully 18 nests during the worker- and gyne-producing phases of the colony cycle and analysed each nest's queen and either all workers or all gynes using highly variable microsatellite loci developed specifically for this species. Three important points arise from our analyses. First, queens are facultatively polyandrous (queen effective mating frequency: range 1–3, harmonic mean 1.13). Second, queens may head colonies containing unrelated individuals (n = 6 of 18 nests), most probably a consequence of colony usurpation during the early phase of the colony cycle before worker emergence. Third, nonqueen's workers may, but the queen's own workers do not, lay fertilized eggs in the presence of the queen that successfully develop into gynes, in agreement with so-called 'concession' models of reproductive skew
Resumo:
We suggest a theoretical scheme for the simulation of quantum random walks on a line using beam splitters, phase shifters, and photodetectors. Our model enables us to simulate a quantum random walk using of the wave nature of classical light fields. Furthermore, the proposed setup allows the analysis of the effects of decoherence. The transition from a pure mean-photon-number distribution to a classical one is studied varying the decoherence parameters.
Resumo:
The effects of linear scaling of the atomic charges of a reference potential on the structure, dynamics, and energetics of the ionic liquid 1,3-dimethylimidazolium chloride are investigated. Diffusion coefficients that span over four orders of magnitude are observed between the original model and a scaled model in which the ionic charges are +/- 0.5 e. While the three-dimensional structure of the liquid is less affected, the partial radial distribution functions change markedly-with the positive result that for ionic charges of +/- 0.7 e, an excellent agreement is observed with ab initio molecular dynamics data. Cohesive energy densities calculated from these partial-charge models are also in better agreement with those calculated from the ab initio data. We postulate that ionic-liquid models in which the ionic charges are assumed to be +/- 1 e overestimate the intermolecular attractions between ions, which results in overstructuring, slow dynamics, and increased cohesive energy densities. The use of scaled-charge sets may be of benefit in the simulation of these systems-especially when looking at properties beyond liquid structure-thus providing on alternative to computationally expensive polarisable force fields.
Resumo:
Two counterpropagating cool and equally dense electron beams are modeled with particle-in-cell simulations. The electron beam filamentation instability is examined in one spatial dimension, which is an approximation for a quasiplanar filament boundary. It is confirmed that the force on the electrons imposed by the electrostatic field, which develops during the nonlinear stage of the instability, oscillates around a mean value that equals the magnetic pressure gradient force. The forces acting on the electrons due to the electrostatic and the magnetic field have a similar strength. The electrostatic field reduces the confining force close to the stable equilibrium of each filament and increases it farther away, limiting the peak density. The confining time-averaged total potential permits an overlap of current filaments with an opposite flow direction.
Resumo:
Microscopic simulation models are often evaluated based on visual inspection of the results. This paper presents formal econometric techniques to compare microscopic simulation (MS) models with real-life data. A related result is a methodology to compare different MS models with each other. For this purpose, possible parameters of interest, such as mean returns, or autocorrelation patterns, are classified and characterized. For each class of characteristics, the appropriate techniques are presented. We illustrate the methodology by comparing the MS model developed by He and Li [J. Econ. Dynam. Control, 2007, 31, 3396-3426, Quant. Finance, 2008, 8, 59-79] with actual data.
Resumo:
Conflicts between field sports, animal welfare and species conservation are frequently contentious. In Ireland, the Irish Coursing Club (ICC) competitively tests the speed and agility of two greyhounds by using a live hare as a lure. Each coursing club is associated with a number of discrete localities, known as preserves, which are managed favourably for hares including predator control, prohibition of other forms of hunting such as shooting and poaching and the maintenance and enhancement of suitable hare habitat. We indirectly tested the efficacy of such management by comparing hare abundance within preserves to that in the wider countryside. In real terms, mean hare density was 18 times higher, and after controlling for variance in habitat remained 3 times higher, within ICC preserves than the wider countryside. Whilst we cannot rule out the role of habitat, our results suggest that hare numbers are maintained at high levels in ICC preserves either because clubs select areas of high hare density and subsequently have a negligible effect on numbers or that active population management positively increases hare abundance. The Irish hare Lepus timidus hibernicus Bell, 1837 is one of the highest priority species for conservation action in Ireland and without concessions for its role in conservation, any change in the legal status Of hare coursing under animal welfare grounds, may necessitate an increase in Government subsidies for conservation on private land together with a strengthened capacity for legislation enforcement.
Resumo:
The random displacement of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. A two-component (slab/two-dimensional composite) model for the turbulence spectrum is employes. An analytical investigation of the asymptotic behavior of the field-line mean square displacement (FL-MSD) is carried out. It is shown that the magnetic field lines behave superdifusively for every large values of the position variable z, since the FL-MSD sigma varies as sigma similar to z(4/3). An intermediate diffusive regime may also possible exist for finite values of z under conditions which are explicitly determined in terms of the intrinsic turbulent plasma parameters. The superdiffusie asymptotic result is confirmed numerically via an iterative algorithm. The relevance to previous resuslts is discussed.
Resumo:
The random walk of magnetic field lines in the presence of magnetic turbulence in plasmas is investigated from first principles. An isotropic model is employed for the magnetic turbulence spectrum. An analytical investigation of the asymptotic behavior of the field-line mean-square displacement is carried out. in terms of the position variable z. It is shown that varies as similar to z ln z for large distance z. This result corresponds to a superdiffusive behavior of field line wandering. This investigation complements previous work, which relied on a two-component model for the turbulence spectrum. Contrary to that model, quasilinear theory appears to provide an adequate description of the field line random walk for isotropic turbulence.
Resumo:
We present a simple quantum mechanical model to describe Coulomb explosion of H-2(+) and D-2(+) by short, intense infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid when the process of dissociation prior to ionization is negligible. The results are compared with recent experimental data for the proton kinetic energy spectrum [Th. Ergler , Phys. Rev. Lett. 95, 093001 (2005); D. S. Murphy , J. Phys. B 40, S359 (2007)]. Using a Franck-Condon distribution over initial vibrational states, the theory reproduces the overall shape of the spectrum with only a small overestimation of slow protons. The agreement between theory and experiment can be made perfect by using a non-Frank-Condon initial distribution characteristic for H-2(+) (D-2(+)) targets produced by strong-field ionization of H-2 (D-2). For comparison, we also present results obtained by two different tunneling models for this process.
Resumo:
The validation of variable-density flow models simulating seawater intrusion in coastal aquifers requires information about concentration distribution in groundwater. Electrical resistivity tomography (ERT) provides relevant data for this purpose. However, inverse modeling is not accurate because of the non-uniqueness of solutions. Such difficulties in evaluating seawater intrusion can be overcome by coupling geophysical data and groundwater modeling. First, the resistivity distribution obtained by inverse geo-electrical modeling is established. Second, a 3-D variable-density flow hydrogeological model is developed. Third, using Archie's Law, the electrical resistivity model deduced from salt concentration is compared to the formerly interpreted electrical model. Finally, aside from that usual comparison-validation, the theoretical geophysical response of concentrations simulated with the groundwater model can be compared to field-measured resistivity data. This constitutes a cross-validation of both the inverse geo-electrical model and the groundwater model.
[Comte, J.-C., and O. Banton (2007), Cross-validation of geo-electrical and hydrogeological models to evaluate seawater intrusion in coastal aquifers, Geophys. Res. Lett., 34, L10402, doi:10.1029/2007GL029981.]