24 resultados para Maximum de vraisemblance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a multiple femtocell deployment in a small area which shares spectrum with the underlaid macrocell. We design a joint energy and radio spectrum scheme which aims not only for co-existence with the macrocell, but also for an energy-efficient implementation of the multi-femtocells. Particularly, aggregate energy usage on dense femtocell channels is formulated taking into account the cost of both the spectrum and energy usage. We investigate an energy-and-spectral efficient approach to balance between the two costs by varying the number of active sub-channels and their energy. The proposed scheme is addressed by deriving closed-form expressions for the interference towards the macrocell and the outage capacity. Analytically, discrete regions under which the most promising outage capacity is achieved by the same size of active sub-channels are introduced. Through a joint optimization of the sub-channels and their energy, properties can be found for the maximum outage capacity under realistic constraints. Using asymptotic and numerical analysis, it can be noticed that in a dense femtocell deployment, the optimum utilization of the energy and the spectrum to maximize the outage capacity converges towards a round-robin scheduling approach for a very small outage threshold. This is the inverse of the traditional greedy approach. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present pollen records from three sites in south Westland, New Zealand, that document past vegetation and inferred climate change between approximately 30,000 and 15,000 cal. yr BP. Detailed radiocarbon dating of the enclosing sediments at one of those sites, Galway tarn, provides a more robust chronology for the structure and timing of climate-induced vegetation change than has previously been possible in this region. The Kawakawa/Oruanui tephra, a key isochronous marker, affords a precise stratigraphic link across all three pollen records, while other tie points are provided by key pollen-stratigraphic changes which appear to be synchronous across all three sites. Collectively, the records show three episodes in which grassland, interpreted as indicating mostly cold subalpine to alpine conditions, was prevalent in lowland south Westland, separated by phases dominated by subalpine shrubs and montane-lowland trees, indicating milder interstadial conditions. Dating, expressed as a Bayesian-estimated single 'best' age followed in parentheses by younger/older bounds of the 95% confidence modelled age range, indicates that a cold stadial episode, whose onset was marked by replacement of woodland by grassland, occurred between 28,730 (29,390-28,500) and 25,470 (26,090-25,270) cal. yr BP (years before AD, 1950), prior to the deposition of the Kawakawa/Oruanui tephra. Milder interstadial conditions prevailed between 25,470 (26,090-25,270) and 24,400 (24,840-24,120) cal. yr BP and between 22,630 (22,930-22,340) and 21,980 (22,210-21,580) cal. yr BP, separated by a return to cold stadial conditions between 24,400 and 22,630 cal. yr BP. A final episode of grass-dominated vegetation, indicating cold stadial conditions, occurred from 21,980 (22,210-21,580) to 18,490 (18,670-17,950) cal. yr BP. The decline in grass pollen, indicating progressive climate amelioration, was well advanced by 17,370 (17,730-17,110) cal. yr BP, indicating that the onset of the termination in south Westland occurred sometime between ca 18,490 and ca 17,370 cal. yr BP. A similar general pattern of stadials and interstadials is seen, to varying degrees of resolution but generally with lesser chronological control, in many other paleoclimate proxy records from the New Zealand region. This highly resolved chronology of vegetation changes from southwestern New Zealand contributes to the examination of past climate variations in the southwest Pacific region. The stadial and interstadial episodes defined by south Westland pollen records represent notable climate variability during the latter part of the Last Glaciation. Similar climatic patterns recorded farther afield, for example from Antarctica and the Southern Ocean, imply that climate variations during the latter part of the Last Glaciation and the transition to the Holocene interglacial were inter-regionally extensive in the Southern Hemisphere and thus important to understand in detail and to place into a global context. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maximum energy to which cosmic rays can be accelerated at weakly magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropized in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high-energy cosmic rays. To circumvent this limit, a highly disorganized field is required on larger scales. The growth of cosmic ray-induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic shocks, on scales comparable to the gyroradius of the most energetic particles, the calculated growth rates have insufficient time to modify the scattering. Since strong modification is a necessary condition for particles in the downstream region to re-cross the shock, in the absence of an alternative scattering mechanism, these results imply that acceleration to higher energies is ruled out. If weakly magnetized ultra-relativistic shocks are disfavoured as high-energy particle accelerators in general, the search for potential sources of ultra-high-energy cosmic rays can be narrowed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new variant of Class-EF power amplifier (PA), the so-called third-harmonic-peaking Class-EF, is presented. It inherits a soft-switching operation from the Class-E PA and a low peak switch voltage from the Class-F PA. More importantly, the new topology allows operations at higher frequencies and permits deployment of large transistors which is normally prohibited since they are always accompanied with high output capacitances. Using a simple transmission-line load network, the PA is synthesized to satisfy Class-EF impedances at fundamental frequency, third harmonic, and all even harmonics as well as to simultaneously provide an impedance matching to 50-Ω load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently introduced Class-EF power amplifier (PA) has a peak switch voltage lower than that of the Class-E PA. However, the value of the transistor output capacitance at high frequencies is typically larger than the required Class-EF optimum shunt capacitance. Consequently, soft-switching operation that minimizes power dissipation during off-to-on transition cannot be achieved at high frequencies. Two new Class-EF PA variants with transmission-line load networks, namely, third-harmonic-peaking (THP) and fifth-harmonic-peaking (FHP) Class-EF PAs are proposed in this paper. These permit operation at higher frequencies at no expense to other PA figures of merit. Analytical expressions are derived in order to obtain circuit component values, which satisfy the required Class-EF impedances at fundamental frequency, all even harmonics, and the first few odd harmonics as well as simultaneously providing impedance matching to a 50- Ω load. Furthermore, a novel open-circuit and shorted stub arrangement, which has substantial practical benefits, is proposed to replace the normal quarter-wave line connected at the transistor's drain. Using GaN HEMTs, two PA prototypes were built. Measured peak drain efficiency of 91% and output power of 39.5 dBm were obtained at 2.22 GHz for the THP Class-EF PA. The FHP Class-EF PA delivered output power of 41.9 dBm with 85% drain efficiency at 1.52 GHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tischoferhohle and Pendling-Barenhohle near Kufstein, Tyrol, are among the only locations where remains of cave bear, Ursus spelaeus-group, were found in the western part of Austria. One sample from each site was radiocarbon-dated four decades ago to ca. 28 C-14 ka BP. Here we report that attempts to date additional samples from Pendling-Barenhohle have failed due to the lack of collagen, casting doubts on the validity of the original measurement. We also unsuccessfully tried to date flowstone clasts embedded in the bone-bearing sediment to provide maximum constraints on the age of this sediment. Ten cave bear bones from Tischoferhohle showing good collagen preservation were radiocarbon-dated to 31.1-39.9 C-14 ka BP, again pointing towards an age underestimation by the original radiocarbon-dated sample from this site. These new dates from Tischoferhohle are therefore currently the only reliable cave bear dates in western Austria and constrain the interval of cave occupation to 44.3-33.5 cal ka BP. We re-calibrate and re-evaluate dates of alpine cave bear samples in the context of available palaeoclimate information from the greater alpine region covering the transition into the Last Glacial Maximum, eventually leading to the demise of this megafauna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the reinsurance market, the risks natural catastrophes pose to portfolios of properties must be quantified, so that they can be priced, and insurance offered. The analysis of such risks at a portfolio level requires a simulation of up to 800 000 trials with an average of 1000 catastrophic events per trial. This is sufficient to capture risk for a global multi-peril reinsurance portfolio covering a range of perils including earthquake, hurricane, tornado, hail, severe thunderstorm, wind storm, storm surge and riverine flooding, and wildfire. Such simulations are both computation and data intensive, making the application of high-performance computing techniques desirable.

In this paper, we explore the design and implementation of portfolio risk analysis on both multi-core and many-core computing platforms. Given a portfolio of property catastrophe insurance treaties, key risk measures, such as probable maximum loss, are computed by taking both primary and secondary uncertainties into account. Primary uncertainty is associated with whether or not an event occurs in a simulated year, while secondary uncertainty captures the uncertainty in the level of loss due to the use of simplified physical models and limitations in the available data. A combination of fast lookup structures, multi-threading and careful hand tuning of numerical operations is required to achieve good performance. Experimental results are reported for multi-core processors and systems using NVIDIA graphics processing unit and Intel Phi many-core accelerators.