50 resultados para Material Properties
Evaporative Moisture Loss from Heterogeneous Stone: Material- Environment Interactions During Drying
Resumo:
The complexities of evaporation from structurally and mineralogically heterogeneous sandstone (Locharbriggs Sandstone) are investigated through a laboratory-based experiment in which a variety of environmental conditions are simulated. Data reported demonstrate the significance of material-environment interactions on the spatial and temporal variability of evaporative dynamics. Evaporation from porous stone is determined by the interplay between environmental, material and solution properties, which govern the rate and mode by which water is transmitted to, and subsequently removed from, an evaporating surface. Initially evaporation is marked by high rates of moisture loss controlled by external atmospheric conditions; then, when a critical level of surface moisture content is reached, hydraulic continuity between the stone surface and subsurface is disrupted and the drying front recedes
beneath the surface, evaporation rates decrease and are controlled by the ability of the material to transport water vapour to the surface. Pore size distribution and connectivity, as well as other material properties, control the timing of each stage of evaporation and the nature of the transition.
These experimental data highlight the complexity of evaporation, demonstrating that different regions of the same stone can exhibit varying moisture dynamics during drying and that the rate and nature of evaporative loss differs under different environmental conditions. The results identify the importance of material-environment interactions during drying and that stone micro-environmental conditions cannot be inferred from ambient data alone.
These data have significance for understanding the spatial distribution of stone surface weathering-related morphologies in both the natural and built environments where mineralogical and/or structural heterogeneity creates differences in moisture flux and hence variable drying rates. Such differences may provide a clearer explanation for the initiation and subsequent development of complex weathering responses where areas of significant deterioration can be found alongside areas that exhibit little or no evidence surface breakdown.
Resumo:
The predictive capability of high fidelity finite element modelling, to accurately capture damage and crush behaviour of composite structures, relies on the acquisition of accurate material properties, some of which have necessitated the development of novel approaches. This paper details the measurement of interlaminar and intralaminar fracture toughness, the non-linear shear behaviour of carbon fibre (AS4)/thermoplastic Polyetherketoneketone (PEKK) composite laminates and the utilisation of these properties for the accurate computational modelling of crush. Double-cantilever-beam (DCB), four-point end-notched flexure (4ENF) and Mixed-mode bending (MMB) test configurations were used to determine the initiation and propagation fracture toughness in mode I, mode II and mixed-mode loading, respectively. Compact Tension (CT) and Compact Compression (CC) test samples were employed to determine the intralaminar longitudinal tensile and compressive fracture toughness. V-notched rail shear tests were used to measure the highly non-linear shear behaviour, associated with thermoplastic composites, and fracture toughness. Corresponding numerical models of these tests were developed for verification and yielded good correlation with the experimental response. This also confirmed the accuracy of the measured values which were then employed as input material parameters for modelling the crush behaviour of a corrugated test specimen.
Resumo:
The focus of this work is to develop the knowledge of prediction of the physical and chemical properties of processed linear low density polyethylene (LLDPE)/graphene nanoplatelets composites. Composites made from LLDPE reinforced with 1, 2, 4, 6, 8, and 10 wt% grade C graphene nanoplatelets (C-GNP) were processed in a twin screw extruder with three different screw speeds and feeder speeds (50, 100, and 150 rpm). These applied conditions are used to optimize the following properties: thermal conductivity, crystallization temperature, degradation temperature, and tensile strength while prediction of these properties was done through artificial neural network (ANN). The three first properties increased with increase in both screw speed and C-GNP content. The tensile strength reached a maximum value at 4 wt% C-GNP and a speed of 150 rpm as this represented the optimum condition for the stress transfer through the amorphous chains of the matrix to the C-GNP. ANN can be confidently used as a tool to predict the above material properties before investing in development programs and actual manufacturing, thus significantly saving money, time, and effort.
Resumo:
The introduction of advanced welding methods as an alternative joining process to riveting in the manufacture of primary aircraft structure has the potential to realize reductions in both manufacturing costs and structural weight. Current design and analysis methods for aircraft panels have been developed and validated for riveted fabrication. For welded panels, considering the buckling collapse design philosophy of aircraft stiffened panels, strength prediction methods considering welding process effects for both local-buckling and post-buckling behaviours must be developed and validated. This article reports on the work undertaken to develop analysis methods for the crippling failure of stiffened panels fabricated using laser beam and friction stir welding. The work assesses modifications to conventional analysis methods and finite-element analysis methods for strength prediction. The analysis work is validated experimentally with welded single stiffener crippling specimens. The experimental programme has demonstrated the potential static strength of laser beam and friction stir welded sheet-stiffener joints for post-buckling panel applications. The work undertaken has demonstrated that the crippling behaviour of welded stiffened panels may be analysed considering standard-buckling behaviour. However, stiffened panel buckling analysis procedures must be altered to account for the weld joint geometry and process altered material properties. © IMechE 2006.
Resumo:
Due to the complexity and inherent instability in polymer extrusion there is a need for process models which can be run on-line to optimise settings and control disturbances. First-principle models demand computationally intensive solution, while ‘black box’ models lack generalisation ability and physical process insight. This work examines a novel ‘grey box’ modelling technique which incorporates both prior physical knowledge and empirical data in generating intuitive models of the process. The models can be related to the underlying physical mechanisms in the extruder and have been shown to capture unpredictable effects of the operating conditions on process instability. Furthermore, model parameters can be related to material properties available from laboratory analysis and as such, lend themselves to re-tuning for different materials without extensive remodelling work.
Resumo:
Planar periodic arrays of metallic elements printed on grounded dielectric substrates are presented to exhibit left-handed properties for surface wave propagation. The proposed structures dispense with the need for grounding vias and ease the implementation of uniplanar left-handed metamaterials at higher frequencies. A transmission line description is used for the initial design and interpretation of the left-handed property. A thorough study based on full wave simulations is carried out with regards to the effect of the element geometrical characteristics and the array periodicity to the properties of the artificial material. Dispersion curves are presented and studied. The distribution of the modal fields in the unit cell is also studied in order to provide an explanation of the material properties. The scalability of the proposed structures to infrared frequencies is demonstrated.
Resumo:
Increased productivity and improved working environment have had high priority in the development of concrete construction over the last decade. Development of a material not needing vibration for compaction—i.e. selfcompacting concrete (SCC)—has successfully met the challenge and is now increasingly being used in routine practice. The key to the improvement of fresh concrete performance has been nanoscale tailoring of molecules for surface active admixtures, as well as improved understanding of particle packing and of the role of mineral surfaces in cementitious matrixes. Fundamental studies of rheological behaviour of cementitious particle suspensions were soon expanded to extensive innovation programmes incorporating applied research, site experiments, instrumented full scale applications supporting technology, standards and guides, information efforts as well as training programmes. The major impact of the introduction of SCC is connected to the production process. The choice and handling of constituents are modified as well as mix design, batching, mixing and transporting. The productivity is drastically improved through elimination of vibration compaction and process reorganisation. The working environment is significantly enhanced through avoidance of vibration induced damages, reduced noise and improved safety. Additionally, the technology is improving performance in terms of hardened material properties like surface quality, strength and durability.
Resumo:
Incinerator bottom ash (IBA) is a residual produced from incinerating municipal solid waste. In the past, IBA presented a big waste disposal problem; however, various recycling approaches have been adopted in recent years to mitigate this problem, as well as to provide a useful alternative to using primary aggregate resources. The use of IBA as an alternative to conventional aggregates in different civil engineering construction applications helps to conserve premium grade aggregate supplies; however, when IBA is in contact with water in the field, as a consequence of precipitation events or changes in water table, elements, such as salts and heavy metals, may be released to the soil and ground water. In this work, IBA waste was mixed with limestone aggregate to produce a blend with acceptable mechanical properties and minimum environmental risks for use as road foundation. The study focused on evaluating potential environmental impacts of some constituents, including sulphate, chloride, sodium, copper, zinc and lead in IBA blends using a lysimeter as a large scale leaching tool. Moreover, a specific scenario simulating field conditions was adopted in the lysimeter to assess the potential impact of changing conditions, such as IBA content in the blend, liquid to solid ratio (L/S) and pH value, on long-term release of heavy metals and salts. Then, numerical modelling was used to predict the release of the aforementioned constituents from IBA based on initial measurement of intrinsic material properties and the kinetic desorption process concept. Experimental results showed that zinc and lead were released in very low concentrations but sodium and sulphate were in high concentrations. The control limestone only blend also demonstrated low release concentrations of constituents in comparison to IBA blends, where constituent concentrations increased with increase in IBA content. Experimental results were compared with numerical results obtained using a non-equilibrium desorption model. Good agreement was found between the two sets of data.
Resumo:
An analytical modeling approach for the prediction of the geometric characteristics of five-dimensional (5D) woven composites has been formulated. The model is driven by readily available data including the weaving parameters and constituent material properties. The new model calculates the individual proportions of fiber in each direction, areal density, overall fiber volume fraction, and laminate thickness. This information is useful for the engineer in the design and manufacture of 5D woven composites. In addition the present model outputs the mathematical definition of the 5D woven composite unit cell, which could be implemented as the geometric input for a downstream analytical model that is capable of predicting the elastic stiffness of 5D woven composites. Input parameters have been sourced from existing published work and the subsequent predictions made by the model are compared with the available experimental data on 5D woven composites.
Resumo:
Fluidised hot melt granulation (FHMG) is a novel granulation technique for processing pharmaceutical powders. Several process and formulation parameters have been shown to significantly influence granulation characteristics within FHMG. In this study we have investigated the effect of the binder properties (binder particle size and binder viscosity) on agglomerate growth mechanisms within FHMG. Low-melting point co-polymers of polyoxyethylene–polyoxypropylene (Lutrol® F68 Poloxamer 188 and Lutrol® F127 Poloxamer 407) were used as meltable binders for FHMG, while standard ballotini beads were used as model fillers for this process. Standard sieve analysis was used to determine the size distribution of granules whereas we utilised fluorescence microscopy to investigate the distribution of binder within granules. This provided further insight into the growth mechanisms during FHMG. Binder particle size and viscosity were found to affect the onset time of granulation. Agglomerate growth achieved equilibrium within short time-scales and was shown to proceed by two competing processes, breakage of formed granules and re-agglomeration of fractured granules. Breakage was affected by the initial material properties (binder size and viscosity). When using binder with a small particle size (<250 µm), agglomerate growth via a distribution mechanism dominated. Increasing the binder particle size shifted the granulation mechanism such that agglomerates were formed predominantly via immersion. A critical ratio between binder diameter and filler has been calculated and this value may be useful for predicting or controlling granulation growth processes.
Resumo:
A study of the external, loaded and unloaded quality factors for frequency selective surfaces (FSSs) is presented. The study is focused on THz frequencies between 5 and 30 THz, where ohmic losses arising from the conductors become important. The influence of material properties, such as metal thickness, conductivity dispersion and surface roughness, is investigated. An equivalent circuit that models the FSS in the presence of ohmic losses is introduced and validated by means of full-wave results. Using both full-wave methods as well as a circuit model, the reactive energy stored in the vicinity of the FSS at resonance upon plane-wave incidence is presented. By studying a doubly periodic array of aluminium strips, it is revealed that the reactive power stored at resonance increases rapidly with increasing periodicity. Moreover, it is demonstrated that arrays with larger periodicity-and therefore less metallisation per unit area-exhibit stronger thermal absorption. Despite this absorption, arrays with higher periodicities produce higher unloaded quality factors. Finally, experimental results of a fabricated prototype operating at 14 THz are presented.
Resumo:
The mechanical response of Polyethylene Terephthalate (PET) in elongation is strongly dependent on temperature, strain and strain rate. Near the glass transition temperature Tg, the stress-strain curve presents a strain softening effect vs strain rate but a strain hardening effect vs strain under conditions of large deformations. The main goal of this work is to propose a viscoelastic model to predict the PET behaviour when subjected to large deformations and to determine the material properties from the experimental data. To represent the non–linear effects, an elastic part depending on the elastic equivalent strain and a non-Newtonian viscous part depending on both viscous equivalent strain rate and cumulated viscous strain are tested. The model parameters can then be accurately obtained trough a comparison with the experimental uniaxial and biaxial tests. The in?uence of the temperature on the viscous part is also modelled and an evaluation of the adiabatic self heating of the specimen is compared to experimental results.
Resumo:
Throughout design development of satellite structure, stress engineer is usually challenged with randomness in applied loads and material properties. To overcome such problem, a risk-based design is applied which estimates satellite structure probability of failure under static and thermal loads. Determining probability of failure can help to update initially applied factors of safety that were used during structure preliminary design phase. These factors of safety are related to the satellite mission objective. Sensitivity-based analysis is to be implemented in the context of finite element analysis (probabilistic finite element method or stochastic finite element method (SFEM)) to determine the probability of failure for satellite structure or one of its components.
Resumo:
Virtual manufacturing of composites can yield an initial early estimation of the induced residual thermal stresses that affect component fatigue life, and deformations that affect required tolerances for assembly. Based on these estimation, the designer can make early decisions, which can help in reducing cost, regarding changes in part design or material properties. In this paper, an approach is proposed to simulate the autoclave manufacturing technique for unidirectional composites. The proposed approach consists of three modules. The first module is a Thermochemical model to estimate temperature and the degree of cure distributions in the composite part during the cure cycle. The second and third modules are stress analysis using FE-Implicit and FE-Explicit respectively. User-material subroutine will be used to model the Viscoelastic properties of the material based on micromechanical theory. Estimated deformation of the composite part can be corrected during the autoclave process by modifying the process-tool design. The deformed composite surface is sent to CATIA for design modification of the process-tool.
Resumo:
This paper presents an analytical model for the prediction of the elastic behaviour of plain-weave fabric composites. The fabric is a hybrid plain-weave with different materials and undulations in the warp and weft directions. The derivation of the effective material properties is based on classical laminate theory (CLT).
The theoretical predictions have been compared with experimental results and predictions using alternative models available in the literature. Composite laminates were manufactured using the resin infusion under flexible tooling (RIFT) process and tested under tension and in-plane shear loading to validate the model. A good correlation between theoretical and experimental results for the prediction of in-plane properties was obtained. The limitations of the existing theoretical models based on classical laminate theory (CLT) for predicting the out-of-plane mechanical properties are presented and discussed.