45 resultados para Markovian jump linear systems (MJLS)
Resumo:
Coloured effluents from textile industries are a problem in many rivers and waterways. Prediction of adsorption capacities of dyes by adsorbents is important in design considerations. The sorption of three basic dyes, namely Basic Blue 3, Basic Yellow 21 and Basic Red 22, onto peat is reported. Equilibrium sorption isotherms have been measured for the three single component systems. Equilibrium was achieved after twenty-one days. The experimental isotherm data were analysed using Langmuir, Freundlich, Redlich-Peterson, Temkin and Toth isotherm equations. A detailed error analysis has been undertaken to investigate the effect of using different error criteria for the determination of the single component isotherm parameters and hence obtain the best isotherm and isotherm parameters which describe the adsorption process. The linear transform model provided the highest R2 regression coefficient with the Redlich-Peterson model. The Redlich-Peterson model also yielded the best fit to experimental data for all three dyes using the non-linear error functions. An extended Langmuir model has been used to predict the isotherm data for the binary systems using the single component data. The correlation between theoretical and experimental data had only limited success due to competitive and interactive effects between the dyes and the dye-surface interactions.
Resumo:
This paper investigates the two-stage stepwise identification for a class of nonlinear dynamic systems that can be described by linear-in-the-parameters models, and the model has to be built from a very large pool of basis functions or model terms. The main objective is to improve the compactness of the model that is obtained by the forward stepwise methods, while retaining the computational efficiency. The proposed algorithm first generates an initial model using a forward stepwise procedure. The significance of each selected term is then reviewed at the second stage and all insignificant ones are replaced, resulting in an optimised compact model with significantly improved performance. The main contribution of this paper is that these two stages are performed within a well-defined regression context, leading to significantly reduced computational complexity. The efficiency of the algorithm is confirmed by the computational complexity analysis, and its effectiveness is demonstrated by the simulation results.
Resumo:
Recently Ziman et al. [Phys. Rev. A 65, 042105 (2002)] have introduced a concept of a universal quantum homogenizer which is a quantum machine that takes as input a given (system) qubit initially in an arbitrary state rho and a set of N reservoir qubits initially prepared in the state xi. The homogenizer realizes, in the limit sense, the transformation such that at the output each qubit is in an arbitrarily small neighborhood of the state xi irrespective of the initial states of the system and the reservoir qubits. In this paper we generalize the concept of quantum homogenization for qudits, that is, for d-dimensional quantum systems. We prove that the partial-swap operation induces a contractive map with the fixed point which is the original state of the reservoir. We propose an optical realization of the quantum homogenization for Gaussian states. We prove that an incoming state of a photon field is homogenized in an array of beam splitters. Using Simon's criterion, we study entanglement between outgoing beams from beam splitters. We derive an inseparability condition for a pair of output beams as a function of the degree of squeezing in input beams.
Resumo:
This paper is concerned with linear and nonlinear magneto- optical effects in multilayered magnetic systems when treated by the simplest phenomenological model that allows their response to be represented in terms of electric polarization, The problem is addressed by formulating a set of boundary conditions at infinitely thin interfaces, taking into account the existence of surface polarizations. Essential details are given that describe how the formalism of distributions (generalized functions) allows these conditions to be derived directly from the differential form of Maxwell's equations. Using the same formalism we show the origin of alternative boundary conditions that exist in the literature. The boundary value problem for the wave equation is formulated, with an emphasis on the analysis of second harmonic magneto-optical effects in ferromagnetically ordered multilayers. An associated problem of conventions in setting up relationships between the nonlinear surface polarization and the fundamental electric field at the interfaces separating anisotropic layers through surface susceptibility tensors is discussed. A problem of self- consistency of the model is highlighted, relating to the existence of resealing procedures connecting the different conventions. The linear approximation with respect to magnetization is pursued, allowing rotational anisotropy of magneto-optical effects to be easily analyzed owing to the invariance of the corresponding polar and axial tensors under ordinary point groups. Required representations of the tensors are given for the groups infinitym, 4mm, mm2, and 3m, With regard to centrosymmetric multilayers, nonlinear volume polarization is also considered. A concise expression is given for its magnetic part, governed by an axial fifth-rank susceptibility tensor being invariant under the Curie group infinityinfinitym.
Resumo:
This paper presents the design of a novel single chip adaptive beamformer capable of performing 50 Gflops, (Giga-floating-point operations/second). The core processor is a QR array implemented on a fully efficient linear systolic architecture, derived using a mapping that allows individual processors for boundary and internal cell operations. In addition, the paper highlights a number of rapid design techniques that have been used to realise this system. These include an architecture synthesis tool for quickly developing the circuit architecture and the utilisation of a library of parameterisable silicon intellectual property (IP) cores, to rapidly develop detailed silicon designs.
Resumo:
This letter derives mathematical expressions for the received signal-to-interference-plus-noise ratio (SINR) of uplink Single Carrier (SC) Frequency Division Multiple Access (FDMA) multiuser MIMO systems. An improved frequency domain receiver algorithm is derived for the studied systems, and is shown to be significantly superior to the conventional linear MMSE based receiver in terms of SINR and bit error rate (BER) performance.
Resumo:
This study investigated methyl methacrylate – polymethyl methacrylate powder bed interactions through droplet analyses, using model fluids and commercially available bone cement. The effects of storage temperature of liquid monomer and powder packing configuration on drop penetration time were investigated. Methyl methacrylate showed much more rapid imbibition than caprolactone due to decrease in both contact angle and fluid viscosity. Drop penetration of caprolactone through polymethyl methacrylate increased with decrease in bed macro-voids and increase in bulk density as predicted by the modified constant drawing area penetration model and confirmed by drop penetration images. Linear relationships were found between droplet mass and drawing area with imbibition time. Further experiments showed gravimetric analysis of the polymerised methyl methacrylate – polymethyl methacrylate matrix under various storage temperatures correlated with Reynolds number and Washburn analyses. These observations have direct implications for the design of mixing and delivery systems for acrylic bone cements used in orthopaedic surgery.
Resumo:
A simple linear precoding technique is proposed for multiple input multiple output (MIMO) broadcast systems using phase shift keying (PSK) modulation. The proposed technique is based on the fact that, on an instantaneous basis, the interference between spatial links in a MIMO system can be constructive and can contribute to the power of the useful signal to improve the performance of signal detection. In MIMO downlinks this co-channel interference (CCI) can be predicted and characterised prior to transmission. Contrary to common practice where knowledge of the interference is used to eliminate it, the main idea proposed here is to use this knowledge to influence the interference and benefit from it, thus gaining advantage from energy already existing in the communication system that is left unexploited otherwise. The proposed precoding aims at adaptively rotating, rather than zeroing, the correlation between the MIMO substreams depending on the transmitted data, so that the signal of interfering transmissions is aligned to the signal of interest at each receive antenna. By doing so, the CCI is always kept constructive and the received signal to interference-plus-noise ratio (SINR) delivered to the mobile units (MUs) is enhanced without the need to invest additional signal power per transmitted symbol at the MIMO base station (BS). It is shown by means of theoretical analysis and simulations that the proposed MIMO precoding technique offers significant performance and throughput gains compared to its conventional counterparts.
Resumo:
In this paper, we investigate what constitutes the least amount of a priori information on the nonlinearity so that the FIR linear part is identifiable in the non-Gaussian input case. Three types of a priori information are considered including quadrant information, point information and locally monotonous information. In all three cases, identifiability has been established and corresponding identification algorithms are developed with their convergence proofs.
Resumo:
There has been much interest recently in the analysis of optomechanical systems incorporating dielectric nano- or microspheres inside a cavity field. We analyse here the situation when one of the mirrors of the cavity itself is also allowed to move. We reveal that the interplay between the two oscillators yields a cross-coupling that results in, e.g., appreciable cooling and squeezing of the motion of the sphere, despite its nominal quadratic coupling. We also discuss a simple modification that would allow this cross-coupling to be removed at will, thereby yielding a purely quadratic coupling for the sphere.
Resumo:
In this paper, we investigate adaptive linear combinations of graph coloring heuristics with a heuristic modifier to address the examination timetabling problem. We invoke a normalisation strategy for each parameter in order to generalise the specific problem data. Two graph coloring heuristics were used in this study (largest degree and saturation degree). A score for the difficulty of assigning each examination was obtained from an adaptive linear combination of these two heuristics and examinations in the list were ordered based on this value. The examinations with the score value representing the higher difficulty were chosen for scheduling based on two strategies. We tested for single and multiple heuristics with and without a heuristic modifier with different combinations of weight values for each parameter on the Toronto and ITC2007 benchmark data sets. We observed that the combination of multiple heuristics with a heuristic modifier offers an effective way to obtain good solution quality. Experimental results demonstrate that our approach delivers promising results. We conclude that this adaptive linear combination of heuristics is a highly effective method and simple to implement.