53 resultados para Mansoni Schistosomula


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The localization and distribution of SALMFamide immunoreactivity (IR), SI(GFNSALMFamide), in the nervous system of both the adult and larval stages of the trematode Schistosoma mansoni has been determined by an indirect immunofluorescent technique in conjunction with confocal scanning laser microscopy (CSLM). Immunostaining was widespread in the nervous system of adult male and female S. mansoni. In the central nervous system (CNS), IR was evident in nerve cells and fibres in the anterior ganglia, cerebral commissure and dorsal and ventral nerve cords. In the peripheral nervous system (PNS), IR was apparent in nerve plexuses associated with the subtegmental musculature, oral and ventral suckers, the lining of the gynaecophoric canal, and in fine nerve fibres innervating the dorsal tubercles of the male worm. In the reproductive system of male and female worms, S1-IR was only observed around the ootype/Mehlis' gland complex in the female. Immunostaining was also evident in the nervous system of both miracidium and cercarial larval stages. A post-embedding, IgG-conjugated colloidal gold immunostaining technique was employed to examine the subcellular distribution of SALMFamide-IR in the CNS of S. mansoni. Gold labelling of peptide was localized over dense-cored vesicles within nerve cell bodies and fibres constituting the neuropile of the anterior ganglia, cerebral commissure and nerve cords of the CNS. Antigen pre-absorption studies indicated that the results obtained do suggest S1-like immunostaining and not cross-reactivity with other peptides, in particular FMRFamide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the potent myoactivity of flatworm FMRFamide-related peptides (FaRPs) on isolated muscle fibers of the human blood fluke, Schistosoma mansoni. The turbellarian peptides YIRFamide (EC50 4 eta M), GYIRFamide (EC50 1 eta M). and RYIRFamide (EC50 7 eta M), all induced muscle contraction more potently than the cestode FaRP GNFFRFamide (EC50 500 eta M). Using a series of synthetic analogs of the flatworm peptides YIRFamide, GYIRFamide and RYIRFamide, the structure-activity relationships of the muscle FaRP receptor were examined. With a few exceptions, each residue in YIRFamide is important in the maintenance of its myoactivity. Alanine scans resulted in peptides that were inactive (Ala(1), Ala(2), Ala(3) and Ala(4) YIRFamide; Ala(4) and Ala(5) RYIRFamide) or had much reduced potencies (Ala(1), Ala(2) and Ala(3) RYIRFamide). Substitution of the N-terminal (Tyr(1)) residue of YIRFamide with the non-aromatic residues Thr or Arg produced analogs with greatly reduced potency. Replacement of the N-terminal Tyr with aromatic amino acids resulted in myoactive peptides (FIRFamide, EC50 100 eta M; WIRFamide, EC50 0.5 eta M). The activity of YIRFamide analogs which possessed a Leu(2), Phe(2) or Met(2) residue (EC50's 10, 1 and 3 eta M, respectively) instead of Ile(2) was not significantly altered, whereas, YVRFamide had a greatly reduced (EC50 200 eta M) activity. Replacement of the Phe(4) with a Tyr(4) (YIRYamide) also greatly lowered potency. Truncated analogs were either inactive (FRFamide, YRFamide, HRFamide, RFamide, Famide) or had very low potency (IRFamide and MRFamide), with the exception of nLRFamide (EC50 20 eta M). YIRF free acid was inactive. In summary, these data show the general structural requirements of this schistosome muscle FaRP receptor to be similar, but not identical, to those of previously characterized molluscan FaRP receptors. (C) 1997 Elsevier Science Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molluscan FMRFamide and two recently discovered platyhelminth FMRFamide-related peptides (FaRPs), GNFFRFamide from the cestode Moniezia expansa and RYIRFamide from the terrestrial turbellarian Artioposthia triangulata, cause dose-dependent contractions of individual muscle fibres from Schistosoma mansoni in vitro. The most potent FaRP tested was the turbellarian peptide RYIRFamide, which produced a concentration-dependent effect between 10(-9) and 10(-7) M. FMRFamide and GNFFRFamide were less potent, inducing contractions between 10(-8)-10(-6) M and 10(-7)-10(-5) M respectively. The contractile effect of each of these peptides was blocked by the presence of 1 mu M FMR-D-Famide. FMRF free acid did not elicit contraction of the muscle fibres. The FaRP-induced contractions did not occur if the Ca2+ was omitted and 0.5 mu M EGTA. was added to the extracellular medium. The FaRP-induced contractions were not blocked by the Ca2+ channel blockers nicardipine, verapamil or diltiazem, although high Kf-induced contractions of these fibres were blocked by nicardipine. These data indicate the presence of FaRP receptors on schistosome muscle fibres and demonstrate their ability to mediate muscle contraction. The action of these endogenous flatworm peptides on schistosome muscle is the first demonstration of a direct excitatory effect of any putative neurotransmitter on the muscle of a flatworm, and establishes a role for FaRPs in neuromuscular transmission in trematodes. In addition, it provides the first evidence that the peptidergic nervous system is a rational target for chemotherapeutic attack in parasitic platyhelmiths.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently isolated a cDNA (SKV1.1) encoding a Shakei-related K+ channel from the human parasitic trematode Schistosoma mansoni. In order to better understand the functions of SKv1.1 protein, the distribution of SKv1.1 protein in adult S. mansoni was analyzed by immunohistochemistry using a region-specific antibody. SKV1.1 proteins were widely expressed in the nervous and muscular systems. The strongest immunoreactivity (IR) was observed in the nervous system of both male and female. In the nervous system, IR for SKv1.1 proteins was localized in cell bodies and nerve fibers of the anterior ganglia, the central commissure, and the main nerve cords. IR was also observed in the dorsal and the ventral peripheral nerve nets, fine nerve fibers entering into a variety of structures such as the dorsal tubercles, longitudinal and ventral muscle fibers, and oral and ventral suckers. In the muscular system, SKv1.1 proteins were localized to the longitudinal, circular, and ventral muscle fibers of male as well as in isolated muscle fibers where native A-type K+ currents were measured. Moderate IR was also seen in a large number of cell bodies in the parenchyma. These results indicate that SKv1.1 protein may play an important role in the regulation of the excitability of neurons and muscle cells of S. mansoni. (C) 1995 Academic Press, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glycolytic enzyme triose phosphate isomerase from Schistosoma mansoni is a potential target for drugs and vaccines. Molecular modelling of the enzyme predicted that a Ser-Ala-Asp motif which is believed to be a helminth-specific epitope is exposed. The enzyme is dimeric (as judged by gel filtration and cross-linking), resistant to proteolysis and highly stable to thermal denaturation (melting temperature of 82.0°C). The steady-state kinetic parameters are high (Km for dihydroxyacetone phosphate is 0.51mM; Km for glyceraldehyde 3-phosphate is 1.1mM; kcat for dihydroxyacetone phosphate is 7800s(-1) and kcat for glyceraldehyde 3-phosphate is 6.9s(-1)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tegumental allergen-like (TAL) proteins from Schistosoma mansoni are part of a family of calcium binding proteins found only in parasitic flatworms. These proteins have attracted interest as potential drug or vaccine targets, yet comparatively little is known about their biochemistry. Here, we compared the biochemical properties of three members of this family: SmTAL1 (Sm22.6), SmTAL2 (Sm21.7) and SmTAL3 (Sm20.8). Molecular modelling suggested that, despite similarities in domain organisation, there are differences in the three proteins’ structures. SmTAL1 was predicted to have two functional calcium binding sites and SmTAL2 was predicted to have one. Despite the presence of two EF-hand-like structures in SmTAL3, neither was predicted to be functional. These predictions were confirmed by native gel electrophoresis, intrinsic fluorescence and differential scanning fluorimetry: both SmTAL1 and SmTAL2 are able to bind calcium ions reversibly, but SmTAL3 is not. SmTAL1 is also able to interact with manganese, strontium, iron(II) and nickel ions. SmTAL2 has a different ion binding profile interacting with cadmium, manganese, magnesium, strontium and barium ions in addition to calcium. All three proteins form dimers and, in contrast to some Fasciola hepatica proteins from the same family; dimerization is not affected by calcium ions. SmTAL1 interacts with the anti-schistosomal drug praziquantel and the calmodulin antagonists trifluoperazine, chlorpromazine and W7. SmTAL2 interacts only with W7. SmTAL3 interacts with the aforementioned calmodulin antagonists and thiamylal, but not praziquantel. Overall, these data suggest that the proteins have different biochemical properties and thus, most likely, different in vivo functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Acetylcholinesterase (AChE) is an important metabolic enzyme of schistosomes present in the musculature and on the surface of the blood stage where it has been implicated in the modulation of glucose scavenging from mammalian host blood. As both a target for the antischistosomal drug metrifonate and as a potential vaccine candidate, AChE has been characterised in the schistosome species Schistosoma mansoni, S. haematobium and S. bovis, but not in S. japonicum. Recently, using a schistosome protein microarray, a predicted S. japonicum acetylcholinesterase precursor was significantly targeted by protective IgG1 immune responses in S. haematobium-exposed individuals that had acquired drug-induced resistance to schistosomiasis after praziquantel treatment.

RESULTS: We report the full-length cDNA sequence and describe phylogenetic and molecular structural analysis to facilitate understanding of the biological function of AChE (SjAChE) in S. japonicum. The protein has high sequence identity (88 %) with the AChEs in S. mansoni, S. haematobium and S. bovis and has 25 % sequence similarity with human AChE, suggestive of a highly specialised role for the enzyme in both parasite and host. We immunolocalized SjAChE and demonstrated its presence on the surface of adult worms and schistosomula, as well as its lower expression in parenchymal regions. The relatively abundance of AChE activity (90 %) present on the surface of adult S. japonicum when compared with that reported in other schistosomes suggests SjAChE may be a more effective drug or immunological target against this species. We also demonstrate that the classical inhibitor of AChE, BW285c51, inhibited AChE activity in tegumental extracts of paired worms, single males and single females by 59, 22 and 50 %, respectively, after 24 h incubation with 200 μM BW284c51.

CONCLUSIONS: These results build on previous studies in other schistosome species indicating major differences in the enzyme between parasite and mammalian host, and provide further support for the design of an anti-schistosome intervention targeting AChE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Schistosomes are able to survive for prolonged periods in the blood system, despite continuous contact with coagulatory factors and mediators of the host immune system. Protease inhibitors likely play a critical role in host immune modulation thereby promoting parasite survival in this extremely hostile environment. Even though Kunitz type serine protease inhibitors have been shown to play important physiological functions in a range of organisms these proteins are less well characterised in parasitic helminths.

METHODS: We have cloned one gene sequence from S. mansoni, Smp_147730 (SmKI-1) which is coded for single domain Kunitz type protease inhibitor, E. coli-expressed and purified. Immunolocalisation and western blotting was carried out using affinity purified polyclonal anti-SmKI-1 murine antibodies to determine SmKI-1 expression in the parasite. Protease inhibitor assays and coagulation assays were performed to evaluate the functional roles of SmKI-1.

RESULTS: SmKI-1 is localised in the tegument of adult worms and the sub-shell region of eggs. Furthermore, this Kunitz protein is secreted into the host in the ES products of the adult worm. Recombinant SmKI-1 inhibited mammalian trypsin, chymotrypsin, neutrophil elastase, FXa and plasma kallikrein with IC50 values of 35 nM, 61 nM, 56 nM, 142 nM and 112 nM, respectively. However, no inhibition was detected for pancreatic elastase or cathepsin G. SmKI-1 (4 μM) delayed blood clot formation, reflected in an approximately three fold increase in activated partial thromboplastin time and prothrombin time.

CONCLUSIONS: We have functionally characterised the first Kunitz type protease inhibitor (SmKI-1) from S. mansoni and show that it has anti-inflammatory and anti-coagulant properties. SmKI-1 is one of a number of putative Kunitz proteins in schistosomes that have presumably evolved as an adaptation to protect these parasites from the defence mechanisms of their mammalian hosts. As such they may represent novel vaccine candidates and/or drug targets for schistosomiasis control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosomes ingest host erythrocytes, liberating large quantities of haem. Despite its toxicity, haem is an essential factor for numerous biological reactions, and may be an important iron source for these helminths. We used a fluorescence haem analogue, palladium mesoporphyrin, to investigate pathways of haem acquisition, and showed that palladium mesoporphyrin accumulates in the vitellaria (eggshell precursor glands) and ovary of female Schistosoma mansoni. Furthermore, incubation of adult females in 10-100 μm cyclosporin A (IC50 = 2.3 μm) inhibits the uptake of palladium mesoporphyrin to these tissues, with tenfold reductions in fluorescence intensity of the ovary. In vitro exposure to cyclosporin A resulted in significant perturbation of egg production, reducing egg output from 34 eggs per female to 5.7 eggs per female over the incubation period, and retardation of egg development. We characterized a S. mansoni homologue of the haem-responsive genes of Caenorhabditis elegans. The gene (Smhrg-1) encodes a protein with a molecular weight of approximately 17 kDa. SmHRG-1 was able to rescue growth in haem transport-deficient HEM1Δ yeast. Transcriptional suppression of Smhrg-1 in adult S. mansoni worms resulted in significant delay in egg maturation, with 47% of eggs from transcriptionally suppressed worms being identified as immature compared with only 27% of eggs laid by control worms treated with firefly luciferase. Our findings indicate the presence of transmembrane haem transporters in schistosomes, with a high abundance of these molecules being present in tissues involved in oogenesis.