46 resultados para MacNeil


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Populations of Gammarus duebeni celticus, previously the only amphipod species resident in the rivers of the Lough Neagh catchment, N. Ireland, have been subjected to invasion by G. pulex from the British mainland. Numerous previous studies have investigated the potential behavioural mechanisms, principally differential mutual predation, underlying the replacement of G. d. celticus by G. pulex in Irish waters, and the mutually exclusive distributions of these species in Britain and mainland Europe. However, the relative degree of influence of abiotic versus biotic factors in structuring these amphipod communities remains unresolved. This study used principal component analysis (PCA) to distinguish physico-chemical parameters that have significant roles in determining the current distribution of G. pulex relative to G. d. celticus in L. Neagh rivers. We show that the original domination of rivers by the native G. d, celticus has changed radically, with many sites in several rivers containing either both species or only G. pulex. G. pulex was more abundant than the G. d. celticus in sites with low dissolved oxygen levels. This was reflected in the macroinvertebrate assemblages associated with G. pulex in these sites, which tended to be those tolerant of low biological water quality. The present study thus emphasizes the importance of the habitat template, particularly water quality, for Gammarus spp. interactions. If rivers become increasingly stressed by organic pollution, it is probable the range expansion of G. pulex will continue. Because these two species are not ecological equivalents, the outcomes of G. pulex incursions into G. d. celticus sites may ultimately depend on the prevailing physico-chemical regimes in each site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Assessing the effects on communities of invasive species is often confounded by environmental factors. In Irish rivers, the introduced amphipod Gammarus pulex replaces the native G. duebeni celticus in lowland stretches. The two amphipods are associated with different macroinvertebrate communities, which may in part be the result of natural longitudinal physicochemical change. However, this hinders assessment of any direct community impacts of the invasive as compared with the native species. Here, we report on a fortuitous circumstance that allowed us to uncouple the community effects of Gammarus species from environmental differences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invasive species and environmental change often occur simultaneously across a habitat and therefore our understanding of their relative roles in the decline of native species is often poor. Here, the environmental mediation of a critical interspecific interaction, intraguild predation (IGP), was examined between invasive (Gammarus pulex) and native (G. d. celticus) freshwater amphipods. In the laboratory, IGP asymmetries (males preying on congeneric females) were examined in river water sourced from zones where: (1) the invader has completely displaced the native; (2) the two species currently co-exist, and (3) the native currently persists uninvaded. The invader was always a more effective IG predator, but this asymmetry was significantly weaker moving from 'invader-only water' through 'co-existence water' to 'native-only water'. The constituent of the water that drives this mediation of IGP was not identified. However, balancing the rigour of laboratory experiments with field derived 'environment' has advanced understanding of known patterns in a native species decline, and its co-existence and persistence in the face of an invader.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using data from field introduction experiments with Gammarus spp. conducted in the rivers of a small island, commencing in 1949, with resampling in the 60s, 70s, 80s, 90s and finally in 2005, we aimed to examine the long-term interaction of the native freshwater amphipod Gammarus duebeni celticus with the introduced G. pulex. Using physico-chemical data from a 2005 island-wide survey, we also aimed to find what environmental factors could influence the distribution of the two species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As biological invasions continue, interactions occur not only between invaders and natives, but increasingly new invaders come into contact with previous invaders. Whilst this can lead to species replacements, co-existence may occur, but we lack knowledge of processes driving such patterns. Since environmental heterogeneity can determine species richness and co-existence, the present study examines habitat use and its mediation of the predatory interaction between invasive aquatic amphipods, the Ponto-Caspian Dikerogammarus villosus and the N. American Gammarus tigrinus. In the Dutch Lake IJsselmeer, we found broad segregation of D. villosus and G. tigrinus by habitat type, the former predominating in the boulder zone and the latter in the soft sediment. However, the two species co-exist in the boulder zone, both on the short and longer terms. We used an experimental simulation of habitat heterogeneity and show that both species utilize crevices, different sized holes in a plastic grid, non-randomly. These amphipods appear to optimise the use of holes with respect to their 'C-shape' body size. When placed together, D. villosus adults preyed on G. tigrinus adults and juveniles, while G. tigrinus adults preyed on D. villosus juveniles. Juveniles were also predators and both species were cannibalistic. However, the impact on G. tigrinus of the superior intraguild predator, D. villosus, was significantly reduced where experimental grids were present as compared to absent. This mitigation of intraguild predation between the two species in complex habitats may explain the co-existence of these two invasive species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannibalism and intraguild predation (IGP) are common amongst freshwater amphipod crustacean aswsemblages, particularly between individuals of different body size, with IGP of smaller by larger species. The decline of Gammarus tigrinus Populations in mainland Europe has been accompanied by the arrival of the Ponto-Caspian invader Dikerogammarus villosus and previous studies have implicated IGP of G. tigrinus by the larger D. villosus as the principal driving force in this replacement. We examined how factors such as microhabitat and body size may mediate both cannibalism within G. tigrinus populations and IGP by D. villosus and thus contribute to field patterns of coexistence and exclusion. A field Survey of an invaded Dutch fake indicated that G. tigrinus and D. villosus differed in distribution. with D. villosus being the numerically dominant amphipod (80-96 %) on the rocky boulder Substrate of the shoreline and G. tigrinus being the dominant amphipod (100 %) in the crushed shell/sand matrix immediately adjacent to this. Laboratory microcosm experiments indicated that G. tigrinus cannibalism, particularly of smaller by larger size classes, may be common. In addition, although D. villosus predation of all G. tigrinus size classes was extreme, the smallest size classes Suffered the highest predation. Indeed, when exposed to D. villosus, predation of larger G. tigrinus was lowest when smaller G. tigrinus were also present. Increasing microhabitat complexity from a simple bare substrate littered with Dreissena polymorpha zebra mussels to a Crushed shell/sand matrix significantly reduced both cannibalism and IGP. Our Study emphasizes the need to consider both life history stages and habitat template, when considering the impacts of biotic interactions and it also emphasizes that complex, interacting factors may be mediating the range expansion of D. villosus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We assessed the extent to which an invader, Gammarus pulex (Crustacea: Amphipoda), has replaced a native, Gammarus duebeni celticus, over a 13-year period in a European river system and some of the abiotic and biotic factors that could account for this. Between 1988 and 2001, 56% of mixed-species sites had become invader-only sites, whereas no mixed sites had become native only again. The native dominated areas of higher dissolved oxygen and water quality, with the reciprocal true for the invader. Field transplant experiments revealed that native survivorship was lower in areas where it had been replaced than in areas where the invader does not yet occur. In invader-only areas, native survivorship was lower than that of the invader when kept separately and lowest when both species were kept together. We also observed predation of the native by the invader. Laboratory oxygen manipulation experiments revealed that at 30% saturation, the native's survivorship was two thirds that of the invader. We conclude that decreasing water quality favours replacement of the native by the invader.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In lethal and sublethal ammonia toxicity tests, we examined differences in tolerance of three species of freshwater amphipods, one native and two invasive in Ireland. The native Gammarus duebeni celticus was slightly less tolerant to ammonia than the invasive G. pulex (96h LC50 = 1.155 and 1.544 mg l(-1), respectively), while another invader, Crangonyx pseudograeilis, had the lowest tolerance (LC50 = 0.36 mg l(-1)). Parasitism of G. pulex by the acanthocephalan Echinorhynchus truttae greatly reduced the tolerance of the invader to ammonia (LC50 = 0.381 mg l(-1)). Further, precopula pair disruption tests indicated that G. d. celticus was more sensitive to ammonia than G. pulex at sublethal levels. We discuss these results in the context of the ecological replacements of native by invader amphipods. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Invading and native species often interact directly, such as by predation, producing patterns of exclusion and coexistence. Less direct factors, such as interactions with the broader abiotic and biotic environment, may also contribute to such patterns, but these have received less recognition. In Northern Ireland, the North American Gammarus tigrinus has invaded freshwaters populated with the native Gammarus duebeni celticus, with intraguild predation between the two implicated in their relative success. However, these species also engage in day and night

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used field surveys and transplant experiments to elucidate the relative roles of physico-chemical regime and intraguild predation in determining the generally mutually exclusive distributions of native and invader freshwater amphipod species. Field surveys showed that the native Gammarus duebeni celticus dominates the shoreline of Lough Neagh, N. Ireland, with some co-occurrence with the N. American invader G. tigrinus. However, the latter species dominates the deeper areas of the mid-Lough. Transplant experiments showed no difference in survival of the native and invader in single species 'bioassay tubes' placed along the shoreline. However, there was significantly higher survival of the invader compared with the native in single species tubes placed in the mid-Lough. In mixed species tubes on the shoreline, the native killed and ate the invader, with no reciprocal interaction, leading to significant reductions of the invader. However, the invader had significantly higher survival than the native in mixed species tubes in the mid-Lough, with no evidence. of predation between the two species. These results indicate that, whereas differential intraguild predation may determine domination of the shoreline by the native, differential physico-chemical tolerances may be major determinants of the domination of the mid-Lough by the invader. This study emphasises the need to consider the habitat template in conjunction with biotic interactions before attempting to draw conclusions about mechanisms determining relative distribution patterns of native and invasive species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies of invasion scenarios over long time periods are important to refine explanations and predictions of invasion success and impact. We used data from surveys in 1958 and 1999 of the macroinvertebrates of Lough Neagh, Northern Ireland, to assess changes in the distribution of native and introduced amphipods in relation to the wider assemblage. In 1958, the invader G. tigrinus dominated the shoreline fauna, with the native G. d. celticus present in very low numbers, whereas in 1999 the reverse was evident. In both surveys, G. tigrinus was the only amphipod present in the mid-Lough. G. tigrinus thus seems to have become established within L. Neagh, perhaps overshot and then senesced, with the native species re-establishing on the shoreline, with the invader mostly restricted to the deep mid-Lough. The non-amphipod macroinvertebrate assemblage was similar between the two surveys, in terms of Bray-Curtis community similarity, assemblage diversity, dominance and the taxa based ASPT water quality index. However, the mean density of macroinvertebrates (all taxa combined) was lower in 1999 compared to 1958, largely accounted for by a decline in oligochaete numbers. Since Gammarus species may be predators of other macroinvertebrates and influence their distribution and abundance, we investigated this trophic link in staged laboratory encounters. Both G. tigrinus and G. d. celticus preyed on isopods, alderflies, mayflies, chironomids and mysids, however, the native G. d. celticus had a significantly greater predatory impact on isopods and chironomids than did the invader G. tigrinus. While we cannot definitively ascribe cause and effect in the present scenario, we discuss how replacement of one amphipod species by another may have impacts on the wider macroinvertebrate assemblage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The balance of predation between closely related invasive and native species can be an important determinant of the success or failure of biological invasions. In Irish freshwaters, the introduced amphipod Gammarus pulex has replaced the native G. duebeni celticus, possibly through differential mutual intraguild predation (IGP). Theoretically, parasitism could mediate such predation and hence the invasion outcome. However, this idea remains poorly studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The classification of a microsporidian parasite observed in the abdominal muscles of amphipod hosts has been repeatedly revised but still remains inconclusive. This parasite has variable spore numbers within a sporophorous vesicle and has been assigned to the genera Glugea, Pleistophora, Stempellia, and Thelohania. We used electron microscopy and molecular evidence to resolve the previous taxonomic confusion and confirm its identification as Pleistophora mulleri. The life cycle of P. mulleri is described from the freshwater amphipod host Gammarus duebeni celticus. Infection appeared as white tubular masses within the abdominal muscle of the host. Light and transmission electron microscope examination revealed the presence of an active microsporidian infection that was diffuse within the muscle block with no evidence of xenoma formation. Paucinucleate merogonial plasmodia were surrounded by an amorphous coat immediately external to the plasmalemma. The amorphous coat developed into a merontogenetic sporophorous vesicle that was present throughout sporulation. Sporogony was polysporous resulting in uninucleate spores, with a bipartite polaroplast, an anisofilar polar filament and a large posterior vacuole. SSU rDNA analysis supported the ultrastructural evidence clearly placing this parasite within the genus Pleistophora. This paper indicates that Pleistophora species are not restricted to vertebrate hosts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Physico-chemical regimes of river systems are major determinants of the distributions and relative abundances of macroinvertebrate taxa. Other factors, however, such as biotic interactions, may co-vary with changes in physico-chemistry and concomitant changes in community composition. Thus, direct cause and effect relationships may not always be established from field surveys. Equally, however, laboratory studies may suffer from lack of realism in extrapolation to the field. Here, we use balanced field transplantation experiments to elucidate the role of physico-chemical regime in determining the generally mutually exclusive distributions of two amphipod taxa, Gammarus (two species) and Crangonyx pseudogracilis. Within two river systems in Ireland, the former species dominate stretches of well oxygenated, high-quality water, whereas the latter dominates stretches of poorly oxygenated, low-quality water. G. pulex and G. duebeni celticus did not survive in bioassay tubes in areas dominated by C. pseudogracilis, which itself survived in tubes in such areas. However, both C. pseudogracilis and Gammarus spp. survived equally well in tubes in areas dominated by Gammarus spp. Physicochemical regime thus limits the movement of Gammarus spp. into C. pseudogracilis areas, but some other factor excludes C. pseudogracilis from Gammarus spp. areas. Since previous laboratory experiments showed high predation rates of Gammarus spp. on C. pseudogracilis, we propose that predation by the former causes exclusion of the latter. Hence, presumed effects of physico-chemical regime on macroinvertebrate presence/abundance may often require experimental field testing and appreciation of alternative explanations.