150 resultados para MILLIMETRIC OSCILLATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate the effects of arginine vasopressin (AVP) on Ca(2+) sparks and oscillations and on sarcoplasmic reticulum (SR) Ca(2+) content in retinal arteriolar myocytes. METHODS: Fluo-4-loaded smooth muscle in intact segments of freshly isolated porcine retinal arteriole was imaged by confocal laser microscopy. SR Ca(2+) store content was assessed by recording caffeine-induced Ca(2+) transients with microfluorimetry and fura-2. RESULTS: The frequencies of Ca(2+) sparks and oscillations were increased both during exposure to, and 10 minutes after washout of AVP (10 nM). Caffeine transients were increased in amplitude 10 and 90 minutes after a 3-minute application of AVP. Both AVP-induced Ca(2+) transients and the enhancement of caffeine responses after AVP washout were inhibited by SR 49059, a V(1a) receptor blocker. Forskolin, an activator of adenylyl cyclase, also persistently enhanced caffeine transients. Rp-8-HA-cAMPS, a membrane-permeant PKA inhibitor, prevented enhancement of caffeine transients by both AVP and forskolin. Forskolin, but not AVP, produced a reversible, Rp-8-HA-cAMPS insensitive reduction in basal [Ca(2+)](i). CONCLUSIONS: AVP activates a cAMP/PKA-dependent pathway via V(1a) receptors in retinal arteriolar smooth muscle. This effect persistently increases SR Ca(2+) loading, upregulating Ca(2+) sparks and oscillations, and may favor prolonged agonist activity despite receptor desensitization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE:
To investigate endothelin 1 (Et1)-dependent Ca(2+)-signaling at the cellular and subcellular levels in retinal arteriolar myocytes.
METHODS:
Et1 responses were imaged from Fluo-4-loaded smooth muscle in isolated segments of rat retinal arteriole using confocal laser microscopy.
RESULTS:
Basal [Ca(2+)](i), subcellular Ca(2+)-sparks, and cellular Ca(2+)-oscillations were all increased during exposure to Et1 (10 nM). Ca(2+)-spark frequency was also increased by 90% by 10 nM Et1. The increase in oscillation frequency was concentration dependent and was inhibited by the EtA receptor (Et(A)R) blocker BQ123 but not by the EtB receptor antagonist BQ788. Stimulation of Ca(2+)-oscillations by Et1 was inhibited by a phospholipase C blocker (U73122; 10 µM), two inhibitors of inositol 1,4,5-trisphosphate receptors (IP(3)Rs), xestospongin C (10 µM), 2-aminoethoxydiphenyl borate (100 µM), and tetracaine (100 µM), a blocker of ryanodine receptors (RyRs).
CONCLUSIONS:
Et1 stimulates Ca(2+)-sparks and oscillations through Et(A)Rs. The underlying mechanism involves the activation of phospholipase C and both IP(3)Rs and RyRs, suggesting crosstalk between these Ca(2+)-release channels. These findings suggest that phasic Ca(2+)-oscillations play an important role in the smooth muscle response to Et1 within the retinal microvasculature and support an excitatory, proconstrictor role for Ca(2+)-sparks in these vessels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The global increase in the penetration of renewable energy is pushing electrical power systems into uncharted territory, especially in terms of transient and dynamic stability. In particular, the greater penetration of wind generation in European power networks is, at times, displacing a significant capacity of conventional synchronous generation with fixed-speed induction generation and now more commonly, doubly fed induction generators. The impact of such changes in the generation mix requires careful monitoring to assess the impact on transient and dynamic stability. This study presents a measurement-based method for the early detection of power system oscillations, with consideration of mode damping, in order to raise alarms and develop strategies to actively improve power system dynamic stability and security. A method is developed based on wavelet-based support vector data description (SVDD) to detect oscillation modes in wind farm output power, which may excite dynamic instabilities in the wider system. The wavelet transform is used as a filter to identify oscillations in frequency bands, whereas the SVDD method is used to extract dominant features from different scales and generate an assessment boundary according to the extracted features. Poorly damped oscillations of a large magnitude, or that are resonant, can be alarmed to the system operator, to reduce the risk of system instability. The proposed method is exemplified using measured data from a chosen wind farm site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method for measuring the phase of oscillations from noisy time series is proposed. To obtain the phase, the signal is filtered in such a way that the filter output has minimal relative variation in the amplitude over all filters with complex-valued impulse response. The argument of the filter output yields the phase. Implementation of the algorithm and interpretation of the result are discussed. We argue that the phase obtained by the proposed method has a low susceptibility to measurement noise and a low rate of artificial phase slips. The method is applied for the detection and classification of mode locking in vortex flow meters. A measure for the strength of mode locking is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive study of the Debye-Huckel repulsive and ion wakefield induced attractive potentials around a dust grain is presented, including ion flow. It is found that the modified interaction potential (especially the attractive wakefield force) can cause instability of linear dust oscillations propagating in a dusty plasma crystal composed of dust grains in a horizontal arrangement suspended in the sheath region near a conducting wall (electrode). The dependence of dust lattice modes on the ion flow is studied, revealing instability of dust lattice modes for certain values of the ion flow speed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear amplitude modulation of longitudinal dust lattice waves (LDLWs) propagating in a dusty plasma crystal is investigated in a continuum approximation. It is shown that long wavelength LDLWs are modulationally stable, while shorter wavelengths may be unstable. The possibility for the formation and propagation of different envelope localized excitations is discussed. It is shown that the total grain displacement bears a (weak) constant displacement (zeroth harmonic mode), due to the asymmetric form of the nonlinear interaction potential. The existence of asymmetric envelope localized modes is predicted. The types and characteristics of these coherent nonlinear structures are discussed. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear aspects of longitudinal motion of interacting point masses in a lattice are revisited, with emphasis on the paradigm of charged dust grains in a dusty plasma (DP) crystal. Different types of localized excitations, predicted by nonlinear wave theories, are reviewed and conditions for their occurrence (and characteristics) in DP crystals are discussed. Making use of a general formulation, allowing for an arbitrary (e.g. the Debye electrostatic or else) analytic potential form phi(r) and arbitrarily long site-to-site range of interactions, it is shown that dust-crystals support nonlinear kink-shaped localized excitations propagating at velocities above the characteristic DP lattice sound speed v(0). Both compressive and rarefactive kink-type excitations are predicted, depending on the physical parameter values, which represent pulse- (shock-)like coherent structures for the dust grain relative displacement. Furthermore, the existence of breather-type localized oscillations, envelope-modulated wavepackets and shocks is established. The relation to previous results on atomic chains as well as to experimental results on strongly-coupled dust layers in gas discharge plasmas is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The weakly nonlinear regime of transverse paramagnetic dust grain oscillations in dusty (complex) plasma crystals is discussed. The nonlinearity, which is related to the sheath electric/magnetic field(s) and to the intergrain (electrostatic/magnetic dipole) interactions, is shown to lead to the generation of phase harmonics and, in the case of propagating transverse dust-lattice modes, to the modulational instability of the carrier wave due to self-interaction. The stability profile depends explicitly on the form of the electric and magnetic fields in the plasma sheath. The long term evolution of the modulated wave packet, which is described by a nonlinear Schrodinger-type equation, may lead to propagating localized envelope structures whose exact forms are presented and discussed. Explicit suggestions for experimental investigations are put forward. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the amplitude modulation of transverse dust lattice waves (TDLW) propagating in a single- and double-layer dusty plasma (DP) crystal. It is shown that a modulational instability mechanism, which is related to an intrinsic nonlinearity of the sheath electric field, may occur under certain conditions. Possibility of the formation of localized excitations (envelope solitons) in the dusty plasma crystal is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accounting for the lattice discreteness and the sheath electric field nonlinearity in dusty plasma crystals, it is demonstrated that highly localized structures (discrete breathers) involving vertical (transverse, off-plane) oscillations of charged dust grains may exist in a dust lattice. These structures correspond to either extremely localized bright breather excitations (pulses) or dark excitations composed of dips/voids. Explicit criteria for selecting different breather modes are presented. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present extensive spectroscopic time series observations of the multiperiodic, rapidly rotating, delta Scuti star tau Pegasi. Information about the oscillations is contained within the patterns of line-profile variation of the star's blended absorption-line spectrum. We introduce the new technique of Doppler deconvolution with which to extract these patterns by modeling the intrinsic stellar spectrum and the broadening functions for each spectrum in the time series. Frequencies and modes of oscillation are identified from the variations using the technique of Fourier-Doppler imaging and a two-dimensional least-squares cleaning algorithm. We find a rich mode spectrum with degrees up to l = 20 and with frequencies below about 35 cycles day-1. Those modes with the largest amplitudes have frequencies that lie within a narrow band. We conclude that the observed spectrum can be explained if the modes of tau Peg propagate in the prograde direction with l ~= |m| and with frequencies that are about equal in the corotating frame of the star. We discuss the implications of these results for the prospect of delta Scuti seismology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use images of high spatial and temporal resolution, obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope, to reveal how the generation of transverse waves in Type I spicules is a direct result of longitudinal oscillations occurring in the photosphere. Here we show how pressure oscillations, with periodicities in the range of 130–440 s, manifest in small-scale photospheric magnetic bright points, and generate kink waves in the Sun’s outer atmosphere with transverse velocities approaching the local sound speed. Through comparison of our observations with advanced two-dimensional magnetohydrodynamic simulations, we provide evidence for how magnetoacoustic oscillations, generated at the solar surface, funnel upward along Type I spicule structures, before undergoing longitudinal-to-transverse mode conversion into waves at twice the initial driving frequency. The resulting kink modes are visible in chromospheric plasma, with periodicities of 65–220 s, and amplitudes often exceeding 400 km. A sausage mode oscillation also arises as a consequence of the photospheric driver, which is visible in both simulated and observational time series. We conclude that the mode conversion and period modi?cation is a direct consequence of the 90? phase shift encompassing opposite sides of the photospheric driver. The chromospheric energy ?ux of these waves are estimated to be ˜3 × 105 W m-2, which indicates that they are suf?ciently energetic to accelerate the solar wind and heat the localized corona to its multi-million degree temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of recent investigations have revealed that transverse waves are ubiquitous in the solar chromosphere. The vast majority of these have been reported in limb spicules and active region fibrils. We investigate long-lived, quiet-Sun, on-disk features such as chromospheric mottles (jet-like features located at the boundaries of supergranular cells) and their transverse motions. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. The data set is comprised of simultaneous imaging in the Ha core, Ca II K, and G band of an on-disk quiet-Sun region. Time-distance techniques are used to study the characteristics of the transverse oscillations. We detect over 40 transverse oscillations in both bright and dark mottles, with periods ranging from 70 to 280 s, with the most frequent occurrence at ~165 s. The velocity amplitudes and transverse displacements exhibit characteristics similar to limb spicules. Neighboring mottles oscillating in-phase are also observed. The transverse oscillations of individual mottles are interpreted in terms of magnetohydrodynamic kink waves. Their estimated periods and damping times are consistent with phase mixing and resonant mode conversion.