77 resultados para MERCURY DROP ELECTRODE
Resumo:
The extraction of electrode kinetic parameters for electrochemical couples in room-temperature ionic liquids (RTILs) is currently an area of considerable interest. Electrochemists typically measure electrode kinetics in the limits of either transient planar or steady-state convergent diffusion for which the voltammetic response is well understood. In this paper we develop a general method allowing the extraction of this kinetic data in the region where the diffusion is intermediate between the planar and convergent limits, such as is often encountered in RTILs using microelectrode voltammetry. A general working surface is derived, allowing the inference of Butler-Volmer standard electrochemical rate constants for the peak-to-peak potential separation in a cyclic voltammogram as a function of voltage scan rate. The method is applied to the case of the ferrocene/ferrocenium couple in [C(2)mim][N(Tf)(2)] and [C(4)mim][N(Tf)(2)].
Resumo:
The electrochemical oxidation of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) has been studied by cyclic voltammetry and potential step chronoamperometry at 303 K in five ionic liquids, namely [C(2)mim] [NTf2], [C(4)mim] [NTf2] [C(4)mpyrr] [NTf2] [C(4)mim] [BF4], and [C(4)mim] [PF6] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [C(4)mpyrr](+) = N-butyl-N-methylpyrrolidinium, [NTf2](-) = bis(trifluoromethylsulfonyl)imide, [BF4](-) = tetrafluoroborate, and [PF6](-) = hexafluorophosphate). Diffusion coefficients, D, of 4.87, 3.32, 2.05, 1.74, and 1.34 x 10(-11) m(2) s(-1) and heterogeneous electron-transfer rate constants, k(0), of 0.0109, 0.0103, 0.0079, 0.0066, and 0.0059 cm s(-1) were calculated for TMPD in [C(2)mim] [NTf2], [C(4)mim] [NTf2], [C(4)mpyrr] [NTf2], [C(4)mim] [BF4], and [C(4)mim] [PF6], respectively, at 303 K. The oxidation of TMPD in [C4mim][PF6] was also carried out at increasing temperatures from 303 to 343 K, with an activation energy for diffusion of 32.3 kJ mol(-1). k(0) was found to increase systematically with increasing temperature, and an activation energy of 31.4 kJ mol(-1) was calculated. The study was extended to six other p-phenylenediamines with alkyl/phenyl group substitutions. D and k(0) values were calculated for these compounds in [C(2)mim] [NTf2], and it was found that k(0) showed no obvious relationship with the hydrodynamic radius, r.
Resumo:
Silver thin films were modified using a novel plasma modification process for the development of thin-film silver-silver chloride reference electrodes. The surface, physical, and electrochemical properties of these electrodes were investigated by atomic force microscopy, thickness and resistivity measurement techniques, as well as impedance spectroscopy and potentiometry. After plasma treatment, thin-film growth was observed and the electrodes, in general, exhibited low interface impedance and a roughened surface. Evidence of a complex surface reorganization was found. Correlating plasma conditions with film properties suggested that increasing pressure and exposure duration increased species availability, therefore governing the reaction rates, while input power appeared to influence the type of surface chemical reactions. Results also indicated that Ar/Cl-2 mixtures should be employed rather than pure chlorine plasmas. (C) 2002 The Electrochemical Society.
Resumo:
Voltammetry is reported for chlorine, Cl-2, dissolved in various room temperature ionic liquids using platinum microdisk electrodes. A single reductive voltammetric wave is seen and attributed to the two-electron reduction of chlorine to chloride. Studies of the effect of voltage scan rate reveal uniquely unusual behavior in which the magnitude of the currents decrease with increasing scan rates. A model for this is proposed and shown to indicate the presence of strongly adsorbed species in the electrode reaction mechanism, most likely chlorine atoms, Cl*((ads)).
Resumo:
The reduction of oxygen was studied over a range of temperatures (298-318 K) in n-hexyltriethylammonium bis(trifluoromethanesulfonyl)imide, [N-6,N-2,N-2,N-2][NTf2], and 1-butyl-2,3-methylimidazolium bis(trifluoromethanesulfonyl)imide, [C(4)dmim][NTf2] on both gold and platinum microdisk electrodes, and the mechanism and electrode kinetics of the reaction investigated. Three different models were used to simulate the CVs, based on a simple electron transfer ('E'), an electron transfer coupled with a reversible homogeneous chemical step ('ECrev') and an electron transfer followed by adsorption of the reduction product ('EC(ads)'), and where appropriate, best fit parameters deduced, including the heterogeneous rate constant, formal electrode potential, transfer coefficient, and homogeneous rate constants for the ECrev mechanism, and adsorption/desorption rate constants for the EC(ads) mechanism. It was concluded from the good simulation fits on gold that a simple E process operates for the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2], and an ECrev process for [C(4)dmim][NTf2], with the chemical step involving the reversible formation of the O-2(center dot-)center dot center dot center dot [C(4)dmim](+) ion-pair. The E mechanism was found to loosely describe the reduction of oxygen in [N-6,N-2,N-2,N-2][NTf2] on platinum as the simulation fits were reasonable although not perfect, especially for the reverse wave. The electrochemical kinetics are slower on Pt, and observed broadening of the oxidation peak is likely due to the adsorption of superoxide on the electrode surface in a process more complex than simple Langmuirian. In [C(4)dmim][NTf2] the O-2(center dot-) predominantly ion-pairs with the solvent rather than adsorbs on the surface, and an ECrev quantitatively describes the reduction of oxygen on Pt also.
Resumo:
Colourless single crystals of [Hg(CF3)(2)(Pur)](4) and [Hg(CF3)(2)(Dat)](2) were obtained from aqueous and etheric solutions of the respective components Purine, (imidazo[4,5-d]pyrimidine, Pur), 3,5-dimethyl-4 '-amino-triazole (Dat) and bis(trifluoromethyl)mercury(II), Hg(CF3)(2). [Hg(CF3)(2)(Pur)](4) crystallizes with the tetragonal system (P-4, Z = 8, a = 1486.8(2), c = 1026.2(l) pm, R-all = 0.0657) with tetrameric molecules consisting of four purine molecules bridged by slightly bent Hg(CF3)2 molecules forming a cage with the CF3 ligands surrounding this cage. The two modifications of [Hg(Dat)(CF3)2]2 (1: 170 K, triclinic, P-1, Z = 2, a 814.9(2), b = 845.4(2), c = 968.4(3) pm, alpha = 106.55(2)degrees, beta= 103.41(2)degrees, gamma = 110.79(2)degrees, R-all = 0.1189; II: monoclinic, P2(1)/c, Z = 8, a = 879.8(2), b = 1731.0(3), c = 1593.9(3) pm, beta = 106.89(2)degrees, R-all = 0.1199) both contain dimeric molecules that are stacked parallel to one crystal axis to strands which are arranged in a parallel fashion in I and rotated against each other in 11 by 110 degrees. In both, the tetrameric [Hg(CF3)(2)(Pur)](4) and the dimeric [Hg(CF3)(2)(Dat)](2) the Hg(CF3)(2) molecules are slightly bent (around 167 and 170 degrees) and rather weakly attached to the N-donor ligands Pur and Dat with Hg-N distances around 272 pm, although in both cases the Hg atoms bridge between two ligand molecules.
Resumo:
As with gold, relativistic effects are important in the chemistry of mercury Together with the closed-shell d(10) configuration of Hg2+ they account for the special bonding schemes as preferred linear coordination with highly covalent contributions to chemical bonding or special affinities to nitrogen and sulfur that are so prominent in mercuric chemistry This research report summarizes recent research on coordination compounds with halogen, oxygen and, especially, nitrogen as direct bonding partners of di-valent mercury and their competition with each other. In a rather systematic way N-donor ligands with one, two and more than two nitrogen atoms have been inspected in order to elucidate the influences that lead to the special bonding schemes of Hg-II-N compounds.
Resumo:
The title compound, (NH4)(2)HgCl2 (NO3)(2), is a double salt of HgCl2 and NH4NO3 and can also be written as `HgCl2.2NH(4)NO(3)'. The structure contains HgCl2 units which are connected by nitrate groups, through long links of ca. 2.90 Angstrom, to give chains running along [010]. All atoms apart from the two oxygen atoms are located on a mirror plane perpendicular to the b axis. The coordination around mercury is a distorted hexagonal bipyramid.
Resumo:
This study investigated methyl methacrylate – polymethyl methacrylate powder bed interactions through droplet analyses, using model fluids and commercially available bone cement. The effects of storage temperature of liquid monomer and powder packing configuration on drop penetration time were investigated. Methyl methacrylate showed much more rapid imbibition than caprolactone due to decrease in both contact angle and fluid viscosity. Drop penetration of caprolactone through polymethyl methacrylate increased with decrease in bed macro-voids and increase in bulk density as predicted by the modified constant drawing area penetration model and confirmed by drop penetration images. Linear relationships were found between droplet mass and drawing area with imbibition time. Further experiments showed gravimetric analysis of the polymerised methyl methacrylate – polymethyl methacrylate matrix under various storage temperatures correlated with Reynolds number and Washburn analyses. These observations have direct implications for the design of mixing and delivery systems for acrylic bone cements used in orthopaedic surgery.