60 resultados para MAXILLOMANDIBULAR FIXATION
Resumo:
Carbon dioxide was reduced photocatalytically using aqueous CdS or ZnS colloids containing tetramethylammonium chloride to give the dimeric and tetrameric products namely, oxalate, glyoxylate, glycolate and tartrate. A model is presented to explain the role of the tetramethylammonium ions. Studies were also performed using ZnO, SiC, BaTiO3 and Sr TiO3, which in the absence of tetramethylammonium ions produced formate and formaldehyde. The relative quantum efficiencies of the six semiconductors were related to their band gaps and conduction band potentials. The role and effectiveness of several 'hole acceptor' (electron donor) compounds in this process is shown to be related to their redox potentials.
Individual Differences in Infants Fixation Duration Relate to Temperament and Behaviour in Childhood
Resumo:
The Oldman River Basin (OMRB), located in southern Alberta (Canada), with an area of 28,200 km2, is mainly forested in its western part and is used for intensive agriculture in its eastern part. The objective of this paper is to estimate the nitrogen (N) budget for the Oldman River Basin as a whole and its sub-basins, and to discuss differences in the N budget between various sub-basins. Better knowledge of the N budget in this watershed may be also utilized for understanding N dynamics in similar watersheds within semi-arid climatic regions. The model used is a mass balance spreadsheet model that takes into account N inputs and N export through surface water. During the last 120 years, anthropogenic N inputs to the OMRB have increased circa 40 fold. By the end of the 20th century, the OMRB received an annualN input of about 5174 kg N km-2 yr-1, whereas only about 25 kg N km-2 yr-1 were exported via riverine flow. For the sub-basins, annual N inputs ranged from 2516 to 19011 kg N km-2 yr-1, and annual N export via riverine flows varied between 6 and 277 kg N km-2 yr-1. Over 85% of total N inputs to the OMRB are due to anthropogenic activities, including manure (55%), synthetic fertilizer (27%), and N fixation on agricultural lands (4%). Sewage accounted for less than 1%, and N inputs from atmospheric deposition and fixation in forests represented 6 and 8% respectively. Despite increasing anthropogenic N inputs, N export with riverine flow currently accounts for only 1% of the inputs, indicating thatmost of theNinputs are currently retained in the OMRB or are re-emitted into the atmosphere.
Resumo:
Reported mast-cell counts in endobronchial biopsies from asthmatic subjects are conflicting, with different methodologies often being used. This study compared three standard methods of counting mast cells in endobronchial biopsies from asthmatic and normal subjects. Endobronchial biopsies were obtained from atopic asthmatic subjects (n=17), atopic nonasthmatic subjects (n=6), and nonatopic nonasthmatic control subjects (n=5). After overnight fixation in Carnoy's fixative, mast cells were stained by the short and long toluidine blue methods and antitryptase immunohistochemistry and were counted by light microscopy. Method comparison was made according to Bland & Altman. The limits of agreement were unacceptable for each of the comparisons, suggesting that the methods are not interchangeable. Coefficients of repeatability were excellent, and not different for the individual techniques. These results suggest that some of the reported differences in mast-cell numbers in endobronchial biopsies in asthma may be due to the staining method used, making direct comparisons between studies invalid. Agreement on a standard method is required for counting mast cells in bronchial biopsies, and we recommend the immunohistochemical method, since fixation is less critical and the resultant tissue sections facilitate clear, accurate, and rapid counts.
Resumo:
Bacterial infection remains a significant problem following total joint replacement. Efforts to prevent recurrent implant infection, including the use of antibiotic-loaded bone cement for implant fixation at the time of revision surgery, are not always successful. In this in vitro study, we investigated whether the addition of chitosan to gentamicin-loaded Palacos® R bone cement increased antibiotic release and prevented bacterial adherence and biofilm formation by Staphylococcus spp. clinical isolates. Furthermore, mechanical tests were performed as a function of time post-polymerisation in pseudo-physiological conditions. The addition of chitosan to gentamicin-loaded Palacos® R bone cement significantly decreased gentamicin release and did not increase the efficacy of the bone cement at preventing bacterial colonisation and biofilm formation. Moreover, the mechanical performance of cement containing chitosan was significantly reduced after 28 days of saline degradation with the compressive and bending strengths not in compliance with the minimum requirements as stipulated by the ISO standard for PMMA bone cement. Therefore, incorporating chitosan into gentamicin-loaded Palacos® R bone cement for use in revision surgery has no clinical antimicrobial benefit and the detrimental effect on mechanical properties could adversely affect the longevity of the prosthetic joint.
Resumo:
Formalin fixation and paraffin embedding (FFPE) is the most commonly used method worldwide for tissue storage. This method preserves the tissue integrity but causes extensive damage to nucleic acids stored within the tissue. As methods for measuring gene expression such as RT-PCR and microarray are adopted into clinical practice there is an increasing necessity to access the wealth of information locked in the Formalin fixation and paraffin embedding archives. This paper reviews the progress in this field and discusses the unique opportunities that exist for the application of these techniques in the development of personalized medicine.
Resumo:
Phytoplankton biomass and rate of production were measured along a transect from 57.54 degreesN to 37.01 degreesN in the northeast Atlantic during July 1996 and at a series of stations over a 7-day period at 37 degreesN 20 degreesW. Surface nutrient concentrations ranged from 4 mu mol l(-1) NO3-, and 0.35 mu mol l(-1) PO43- at 57.54 degreesN to <10 nmol l(-1) NO3- and similar to 10 nmol l(-1) PO43- at 37.01 degreesN. The greatest phytoplankton biomass and production were measured in the vicinity of a frontal system at 50 degreesN, and there was a general decline in total phytoplankton biomass and production to the south of the transect. Production was measured in three size fractions. At the station with the highest chlorophyll concentrations (50.34 degreesN), phytoplankton cells larger than 5 mum dominated the assemblage, accounting for 72% of the chlorophyll concentration (22.9 mg m(-2)) and 51% of primary production (54.1 mmol Cm-2 d(-1)), but picophytoplankton production was also high (43%). At 57 degreesN, carbon fixation by the > 5 mum fraction accounted for 75% of the daily production of 60.75 mmol Cm-2 d(-1). At 37 degreesN, picophytoplankton was the dominant group, accounting for similar to 58% (10 mg m(-2)) of chlorophyll and similar to 64% (46 mmol Cm-2 d(-1)), of primary production. Nitrate, ammonium and phosphate uptake rates also were determined. Although high nitrate uptake rates were measured in the surface water at similar to 50 degreesN, the greatest uptake rates of both depth-integrated nitrate and ammonium were at the south of the transect. At 37 degreesN, a deep euphotic zone was present and light penetrated through the nitracline; total nitrate uptake was enhanced because of assimilation at the base of the euphotic zone. As a consequence, high values of depth-integrated f-ratio were measured in the oligotrophic waters at the south of the transect. Phosphate was predominantly incorporated into the picoplankton fraction, which included heterotrophic and autotrophic components, at all stations and a significant proportion of phosphate uptake occurred in the dark. The C:N:P assimilation ratios were variable throughout the region; phosphate uptake was generally greater than would be expected if nutrient assimilation were in proportion to the Redfield ratio. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Data are summarised for two Lagrangian experiments in the North Atlantic in early summer 1996. At 59 degreesN 20 degreesW, plankton dynamics was studied in an SF, tracer release experiment within a mesoscale eddy over a 9-day period. At 37 degreesN 20 degreesW, a second experiment followed a drifting buoy for 7 days. The data obtained in these two experiments have been averaged for 3 depth strata; the euphotic zone, the surface mixed layer (SML), and the seasonal thermocline immediately beneath the surface mixed layer. At 59 degreesN, the euphotic zone was only marginally deeper than the SML, but at 37 degreesN the SML was ca 30 m and the euphotic depth was ca 110 m. At 37 degreesN, nutrient concentrations in the SML were low but significant new production occurred in the thermocline because of light penetration into the nutricline. The particulate organic carbon (POC) concentration of the SML at 59 degreesN was 13-15 mu mol C kg(-1), but at 37 degreesN POC concentrations were 4 mu mol C kg(-1). These POC measurements include biota and detritus. As a way of investigating latitudinal differences in the plankton communities, estimates have been made of the carbon and nitrogen content of phytoplankton, bacterioplankton, microzooplankton and mesozooplankton. At both 59 degreesN and 37 degreesN, phytoplankton was the largest component, accounting for ca 50% of the planktonic biomass in the SML. At 59 degreesN, microzooplankton was 16% of the planktonic carbon, but at 37 degreesN this reduced to 8% of the total. Mesozooplankton was a relatively constant proportion (ca 20%) of the planktonic carbon in the SML at both 59 degreesN and 37 degreesN. Bacterioplankton was 14% of the biomass at 59 degreesN, increasing to 24% in the microbial loop-dominated system at 37 degreesN. Mean carbon fixation rate in the oligotrophic southern station was 24% of that at the north, with more carbon fixation below the SML at 37 degreesN than at 59 degreesN. Respiration rates showed little variation with latitude, and the rates at 37 degreesN were 80% of those at 59 degreesN. Nitrate and ammonium uptake rates were very low in the oligotrophic conditions in the SML at 37 degreesN, but nitrate uptake in the euphotic zone was comparable to that at 59 degreesN. Ammonium uptake by phytoplankton was also significantly greater at 37 degreesN, in both the euphotic zone and thermocline, but uptake in the SML was only 20% of that in the SML at 59 degreesN. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Reliable population DNA molecular markers are difficult to develop for molluscs, the reasons for which are largely unknown. Identical protocols for microsatellite marker development were implemented in three gastropods. Success rates were lower for Gibbula cineraria compared to Littorina littorea and L. saxatilis. Comparative genomic analysis of 47.2?kb of microsatellite containing sequences (MCS) revealed a high incidence of cryptic repetitive DNA in their flanking regions. The majority of these were novel, and could be grouped into DNA families based upon sequence similarities. Significant inter-specific variation in abundance of cryptic repetitive DNA and DNA families was observed. Repbase scans show that a large proportion of cryptic repetitive DNA was identified as transposable elements (TEs). We argue that a large number of TEs and their transpositional activity may be linked to differential rates of DNA multiplication and recombination. This is likely to be an important factor explaining inter-specific variation in genome stability and hence microsatellite marker development success rates. Gastropods also differed significantly in the type of TEs classes (autonomous vs non-autonomous) observed. We propose that dissimilar transpositional mechanisms differentiate the TE classes in terms of their propensity for transposition, fixation and/or silencing. Consequently, the phylogenetic conservation of non-autonomous TEs, such as CvA, suggests that dispersal of these elements may have behaved as microsatellite-inducing elements. Results seem to indicate that, compared to autonomous, non-autonomous TEs maybe have a more active role in genome rearrangement processes. The implications of the findings for genomic rearrangement, stability and marker development are discussed.