29 resultados para MANIFOLD
Resumo:
This paper proposes a two-level 3D human pose tracking method for a specific action captured by several cameras. The generation of pose estimates relies on fitting a 3D articulated model on a Visual Hull generated from the input images. First, an initial pose estimate is constrained by a low dimensional manifold learnt by Temporal Laplacian Eigenmaps. Then, an improved global pose is calculated by refining individual limb poses. The validation of our method uses a public standard dataset and demonstrates its accurate and computational efficiency. © 2011 IEEE.
Resumo:
A new scheme, sketch-map, for obtaining a low-dimensional representation of the region of phase space explored during an enhanced dynamics simulation is proposed. We show evidence, from an examination of the distribution of pairwise distances between frames, that some features of the free-energy surface are inherently high-dimensional. This makes dimensionality reduction problematic because the data does not satisfy the assumptions made in conventional manifold learning algorithms We therefore propose that when dimensionality reduction is performed on trajectory data one should think of the resultant embedding as a quickly sketched set of directions rather than a road map. In other words, the embedding tells one about the connectivity between states but does not provide the vectors that correspond to the slow degrees of freedom. This realization informs the development of sketch-map, which endeavors to reproduce the proximity information from the high-dimensionality description in a space of lower dimensionality even when a faithful embedding is not possible.
Resumo:
This paper presents generalized Laplacian eigenmaps, a novel dimensionality reduction approach designed to address stylistic variations in time series. It generates compact and coherent continuous spaces whose geometry is data-driven. This paper also introduces graph-based particle filter, a novel methodology conceived for efficient tracking in low dimensional space derived from a spectral dimensionality reduction method. Its strengths are a propagation scheme, which facilitates the prediction in time and style, and a noise model coherent with the manifold, which prevents divergence, and increases robustness. Experiments show that a combination of both techniques achieves state-of-the-art performance for human pose tracking in underconstrained scenarios.
Resumo:
Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts.
Resumo:
'At a time of crisis and therefore a crucial juncture in European politics, Dagmar Schiek offers us an inspiring vision of the potential of the European Union. In her brilliant study, she exposes the obstacles that economic integration has posed for achievement of social justice, and provides a bold solution. Rejecting more limited models of constitutionalism, she presents a convincing alternative which is socially embedded, allowing space for action by manifold actors at multiple levels of governance.' - Tonia Novitz, University of Bristol, UK. © Dagmar Schiek 2012. All rights reserved.
Resumo:
The adulteration of extra virgin olive oil with other vegetable oils is a certain problem with economic and health consequences. Current official methods have been proved insufficient to detect such adulterations. One of the most concerning and undetectable adulterations with other vegetable oils is the addition of hazelnut oil. The main objective of this work was to develop a novel dimensionality reduction technique able to model oil mixtures as a part of an integrated pattern recognition solution. This final solution attempts to identify hazelnut oil adulterants in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. The proposed Continuous Locality Preserving Projections (CLPP) technique allows the modelling of the continuous nature of the produced in house admixtures as data series instead of discrete points. This methodology has potential to be extended to other mixtures and adulterations of food products. The maintenance of the continuous structure of the data manifold lets the better visualization of this examined classification problem and facilitates a more accurate utilisation of the manifold for detecting the adulterants.
Resumo:
Data registration refers to a series of techniques for matching or bringing similar objects or datasets together into alignment. These techniques enjoy widespread use in a diverse variety of applications, such as video coding, tracking, object and face detection and recognition, surveillance and satellite imaging, medical image analysis and structure from motion. Registration methods are as numerous as their manifold uses, from pixel level and block or feature based methods to Fourier domain methods.
This book is focused on providing algorithms and image and video techniques for registration and quality performance metrics. The authors provide various assessment metrics for measuring registration quality alongside analyses of registration techniques, introducing and explaining both familiar and state-of-the-art registration methodologies used in a variety of targeted applications.
Key features:
- Provides a state-of-the-art review of image and video registration techniques, allowing readers to develop an understanding of how well the techniques perform by using specific quality assessment criteria
- Addresses a range of applications from familiar image and video processing domains to satellite and medical imaging among others, enabling readers to discover novel methodologies with utility in their own research
- Discusses quality evaluation metrics for each application domain with an interdisciplinary approach from different research perspectives
Resumo:
Background: Oncology is a field that profits tremendously from the genomic data generated by high-throughput technologies, including next-generation sequencing. However, in order to exploit, integrate, visualize and interpret such high-dimensional data efficiently, non-trivial computational and statistical analysis methods are required that need to be developed in a problem-directed manner.
Discussion: For this reason, computational cancer biology aims to fill this gap. Unfortunately, computational cancer biology is not yet fully recognized as a coequal field in oncology, leading to a delay in its maturation and, as an immediate consequence, an under-exploration of high-throughput data for translational research.
Summary: Here we argue that this imbalance, favoring 'wet lab-based activities', will be naturally rectified over time, if the next generation of scientists receives an academic education that provides a fair and competent introduction to computational biology and its manifold capabilities. Furthermore, we discuss a number of local educational provisions that can be implemented on university level to help in facilitating the process of harmonization.
Resumo:
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities, where virtual decompositions are robustly linked to the underlying geometry. Current virtual topology technology is extended to allow the virtual partitioning of volume cells. A valid description of the topology, including relative orientations, is maintained which enables downstream interrogations to be performed on the analysis topology description, such as determining if a specific meshing strategy can be applied to the virtual volume cells. As the virtual representation is a true non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. Therefore, the advantages of non-manifold modelling are exploited within the manifold modelling environment of a major commercial CAD system without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies here are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence.
Resumo:
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities. Current virtual topology technology is extended to allow the virtual partitioning of volume cells and the topological queries required to carry out each operation are provided. Virtual representations are robustly linked to the underlying geometric definition through an analysis topology. The analysis topology and all associated virtual and topological dependencies are automatically updated after each virtual operation, providing the link to the underlying CAD geometry. Therefore, a valid description of the analysis topology, including relative orientations, is maintained. This enables downstream operations, such as the merging or partitioning of virtual entities, and interrogations, such as determining if a specific meshing strategy can be applied to the virtual volume cells, to be performed on the analysis topology description. As the virtual representation is a non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. This enables the advantages of non-manifold modelling to be exploited within the manifold modelling environment of a major commercial CAD system, without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence, whilst the original CAD geometry is not disturbed. Robust definitions of the topological and virtual dependencies enable the same virtual topology definitions to be accessed, interrogated and manipulated within multiple different CAD packages and linked to the underlying geometry.
Resumo:
States and international organizations have found irresistible cause in a globalizing world to coopt nonstate actors (NGOs, private standard setters and so forth) to manage the manifold problems arising under their stretched mandates and resources. The pooling of capacities in the pursuit of common goals seems perfectly sensible. Yet although the strategy of cooptation has become a policy of choice, policy makers often lack full knowledge of its implications. As Philip Selznick first showed, cooptation can have unintended consequences, shifting leadership from one organization to another. We place this fertile insight in a better specified analytical framework. That is, one capable of explaining when and how leadership shifts occur and where the status quo leaders will remain at the helm. Using original interview data and structured focused comparisons to test the framework, we reveal dramatic variation in leadership changes following the cooptation of outside actors in global financial and environmental governance.
Resumo:
The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.
Resumo:
The article is focused on analysis of global efficiency of new mold for rotational molding of plastic parts, being directly heated by thermal fluid. The overall efficiency is based on several items such as reduction of cycle time, better uniformity of heating-cooling and low energy consumption. The new tool takes advantage of additive fabrication and electroforming for making the optimal manifold and cavity shell of the mold. Experimental test of a prototype mold was carried out on an experimental rotational molding machine, developed for this purpose, measuring wall temperature, and internal air temperature, with and without plastic material inside. Results were compared with conventional mold heated into an oven and to theoretical simulations done by Computational Fluid Dynamic software (CFD). The analysis represents considerable improvement of cycle time related to conventional methods (heated by oven) and better thermal uniformity to conventional procedures by direct heating of oil with external channels. In addition to thermal analysis an energetic efficiency study was done. POLYM. ENG. SCI., 52:1998-2005, 2012. © 2012 Society of Plastics Engineers Copyright © 2012 Society of Plastics Engineers.
Resumo:
The main objective of this work was to develop a novel dimensionality reduction technique as a part of an integrated pattern recognition solution capable of identifying adulterants such as hazelnut oil in extra virgin olive oil at low percentages based on spectroscopic chemical fingerprints. A novel Continuous Locality Preserving Projections (CLPP) technique is proposed which allows the modelling of the continuous nature of the produced in-house admixtures as data series instead of discrete points. The maintenance of the continuous structure of the data manifold enables the better visualisation of this examined classification problem and facilitates the more accurate utilisation of the manifold for detecting the adulterants. The performance of the proposed technique is validated with two different spectroscopic techniques (Raman and Fourier transform infrared, FT-IR). In all cases studied, CLPP accompanied by k-Nearest Neighbors (kNN) algorithm was found to outperform any other state-of-the-art pattern recognition techniques.