66 resultados para Lymphocytes T DP (CD4 CD8 )


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skin-draining LN contain several phenotypically distinguishable DC populations, which may be immature or mature. Mature DC are generally considered to have lost the capacity to acquire and present newly encountered Ag. Using antibody-opsonized liposomes as Ag carriers, we show that mature DC purified from skin explants are able to efficiently capture liposomes, process Ag encapsulated within them and activate Ag-specific CD4(+) T cells. Explant DC from mice with Langerhans cells (LC) expressing the primate diphtheria toxin receptor that were exposed to diphtheria toxin in vivo presented Ag as well as explant DC from wild-type mice, indicating that LC are not required and dermal DC are probably responsible for this presentation. We further show that all DC subtypes from LN that capture opsonized Ag are capable of cross-presenting it to CD8(+) T cells. Induction of additional maturation in vivo by LPS or treatment with double-stranded RNA did not alter the Ag presentation capacity of the skin or LN DC subtypes. These results suggest that mature DC present in skin-draining LN may play an important role in the induction of primary and/or secondary immune responses against Ag delivered to the LN that they take up by receptor-mediated endocytosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gene gun immunization, i.e., bombardment of skin with DNA-coated particles, is an efficient method for the administration of DNA vaccines. Direct transfection of APC or cross-presentation of exogenous Ag acquired from transfected nonimmune cells enables MHC-I-restricted activation of CD8(+) T cells. Additionally, MHC-II-restricted presentation of exogenous Ag activates CD4(+) Th cells. Being the principal APC in the epidermis, Langerhans cells (LC) seem ideal candidates to accomplish these functions. However, the dependence on LC of gene gun-induced immune reactions has not yet been demonstrated directly. This was primarily hampered by difficulties to discriminate the contributions of LC from those of other dermal dendritic cells. To address this problem, we have used Langerin-diphtheria toxin receptor knockin mice that allow for selective inducible ablation of LC. LC deficiency, even over the entire duration of experiments, did not affect any of the gene gun-induced immune functions examined, including proliferation of CD4(+) and CD8(+) T cells, IFN-gamma secretion by spleen cells, Ab production, CTL activity, and development of protective antitumor immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulation of CD4 T cell numbers during an immune response should take account of the amount of antigen (Ag), the initial frequency of Ag-specific T cells, the mix of naive versus experienced cells, and (ideally) the diversity of the repertoire. Here we describe a novel mechanism of T cell regulation that potentially deals with all of these parameters. We found that CD4 T cells establish a negative feedback loop by capturing their cognate MHC/peptide complexes from Ag-presenting cells and presenting them to Ag-experienced CD4 T cells, thereby inhibiting their recruitment into the response while allowing recruitment of naive T cells. The inhibition is Ag specific, begins at day 2 (long before Ag disappearance), and cannot be overcome by providing new Ag-loaded dendritic cells. In this way CD4 T cell proliferation is regulated in a functional relationship to the amount of Ag, while allowing naive T cells to generate repertoire variety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular recognition and attachment of the CD4 molecule and the HIV envelope glycoprotein (gp120) might be described as a consecutive three-step molecular recognition process. 1. (a) Long range interaction: electrostatic pre-orientation, 2. (b) short range interaction: electronic attachment followed by a â˜Locking-inâ (via aromatic ring orientation) and 3. (c) internal interaction (induced fit): conformational readjustment of the protein molecules. On the basis of the preliminary investigations (X-ray structures of CD4 and biological studies of CD4 and gp120 point mutants) we described a computational model. This approach consists of empirical calculations as well as ab initio level of quantum chemistry. The conformational analysis of the wild type and mutant CD4 molecules was supported by molecular mechanics and dynamics (Amber force field). The latter analysis involves the application of a novel method, the Amino Acid Conformation Assignment of Proteins (ACAP) software, developed for the notation of secondary protein structures. According to the cardinal role of the electrostatic factors during this interaction, several ab initio investigations were performed for better understanding of the recognition process on submolecular level. Using the above mentioned computational model, we could interpret the basic behaviours and predict some additional features of CD4-gp120 interaction, in spite of the missing gp120 X-ray structure.