58 resultados para Low-pressure systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study reports the formulation/characterisation of novel polymeric platforms designed to behave as low-viscosity systems in the nonaqueous state, however, following uptake of aqueous ?uids, exhibit rheological structuring and mucoadhesion. The rheological/mechanical and mucoadhesive properties of platforms containing poly(acrylic acid) (PAA, 1%, 3%, 5%, w/w) and poloxamines (Tetronic 904, 901, 704, 701, 304), both in the absence and presence of phosphate buffered saline (PBS, pH 7.4) are described. With the exception of Tetronic 904, all formulations exhibited Newtonian ?ow in the nonaqueous state, whereas, all aqueous formulations displayed pseudoplastic ?ow. The consistency and viscoelastic properties were dependent on the concentrations of PAA and PBS and Tetronic grade. PBS signi?cantly increased the consistency, viscoelasticity and mucoadhesion, reaching a maximum at a de?ned concentration of PBS that was dependent on PAA concentration and Tetronic grade. Formulations containing Tetronic 904 exhibited greatest consistency and elasticity both prior to and after dilution with PBS. Increasing PAA concentration enhanced the mucoadhesive properties. Prolonged drug release of metronidazole was observed from formulations containing 10% (w/w) PBS, 3% and, particularly, 5% (w/w) PAA. It is suggested that the physicochemical properties of formulations containing 3% or 5% (w/w) PAA and Tetronic 904, would render them suitable platforms for administration to body cavities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The localized deposition of the energy of a laser pulse, as it ablates a solid target, introduces high thermal pressure gradients in the plasma. The thermal expansion of this laser-heated plasma into the ambient medium (ionized residual gas) triggers the formation of non-linear structures in the collisionless plasma. Here an electron-proton plasma is modelled with a particle-in-cell simulation to reproduce aspects of this plasma expansion. A jump is introduced in the thermal pressure of the plasma, across which the otherwise spatially uniform temperature and density change by a factor of 100. The electrons from the hot plasma expand into the cold one and the charge imbalance drags a beam of cold electrons into the hot plasma. This double layer reduces the electron temperature gradient. The presence of the low-pressure plasma modifies the proton dynamics compared with the plasma expansion into a vacuum. The jump in the thermal pressure develops into a primary shock. The fast protons, which move from the hot into the cold plasma in the form of a beam, give rise to the formation of phase space holes in the electron and proton distributions. The proton phase space holes develop into a secondary shock that thermalizes the beam.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to study the influence of changing the cation of the ionic liquid (IL) on gas solubility. For this purpose, the low-pressure solubility of carbon dioxide and of ethane in three ILs based on the bis{(trifluoromethyl)sulfonyl}imide anion ([NTf2](-)) was determined experimentally. Solubility data is reported for 1-ethyl-3-methylimidazolium ([C(1)C(2)Im](+)), 1-butyl-1-methylpyrrolidinium ([C(1)C(4)pyrr](+)) and propylcholinium ([N1132-OH](+)) bis{(trifluoromethyl)sulfonyl}imide ILs between 300 and 345 K. These data are precise to within +/- 1% and accurate to within +/- 5%. In these ILs, carbon dioxide (mole fraction solubility between 1 and 3 x 10(-2), molarity between 0.03 and 0.1 mol L-1) is one order of magnitude more soluble than ethane. The effect of changing the cation is small but significant. Changing the cation has a similar effect on both gases even if the differences are more pronounced in the case of ethane with the order of solubility [C(1)C(4)pyrr][NTf2] > [C(1)C(2)Im][NTf2] > [N1132-OH][NTf2]. For all the systems, the solubility decreases with temperature corresponding to exothermic processes of solvation and negative enthalpies and entropies of solvation were calculated. The properties of solvation of the two gases in [C(1)C(4)pyrr][NTf2] do not vary significantly with temperature while important variations are depicted for both gases in [C(1)C(2)Im][NTf2]. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This review summarises landform records and published age-estimates (largely based upon tephrochronology) to provide an overview of glacier fluctuations upon the Kamchatka Peninsula during the Holocene and, to a lesser degree, earlier phases of glaciation. The evidence suggests that following deglaciation from the Last Glacial Maximum (LGM), the peninsula experienced numerous phases of small-scale glacial advance. During the Late Glacial, moraine sequences appear to reflect the former presence of extensive glaciers in some parts of the peninsula, though little chronological control is available for deposits of this period. During the Holocene, the earliest and most extensive phase of advance likely occurred sometime prior to c. 6.8 ka, when glaciers extended up to 8 km beyond their current margins. However, these deposits lack maximum age constrains, and pre-Holocene ages cannot be discounted. Between c. 6.8 ka and the onset of ‘Neoglaciation’ c. 4.5 ka, there is little evidence of glacial advance upon the peninsula, and this period likely coincides with the Holocene climatic optimum (or ‘hypsithermal’). Since c. 4.5 ka, numerous moraines have been deposited, likely reflecting a series of progressively less extensive phases of ice advance during the Late Holocene. The final stage of notable ice advance occurred during the Little Ice Age (LIA), between c. 1350 and 1850 C.E., when reduced summer insolation in the Northern Hemisphere likely coincided with solar activity minima and several strong tropical volcanic eruptions to induce widespread cooling. Following the LIA, glaciers upon the peninsula have generally shown a pattern of retreat, with accelerated mass loss in recent decades. However, a number of prominent climatically and non-climatically controlled glacial advances have also occurred during this period. In general, there is evidence to suggest that millennial scale patterns in the extent and timing of glaciation upon the peninsula (encompassing much of the last glacial period) are governed by the extent of ice sheets in North America. Millennial-to-centennial scale fluctuations of Kamchatkan glaciers (encompassing much of the Holocene) are governed by the location and relative intensity of the Aleutian Low and Siberian High pressure systems. Decadal scale variations in glacier extent and mass balance (particularly since the LIA) are governed by inter-decadal climatic variability over the North Pacific (as reflected by the Pacific Decadal Oscillation), alongside a broader trend of hemispheric warming.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The end of Dennard scaling has pushed power consumption into a first order concern for current systems, on par with performance. As a result, near-threshold voltage computing (NTVC) has been proposed as a potential means to tackle the limited cooling capacity of CMOS technology. Hardware operating in NTV consumes significantly less power, at the cost of lower frequency, and thus reduced performance, as well as increased error rates. In this paper, we investigate if a low-power systems-on-chip, consisting of ARM's asymmetric big.LITTLE technology, can be an alternative to conventional high performance multicore processors in terms of power/energy in an unreliable scenario. For our study, we use the Conjugate Gradient solver, an algorithm representative of the computations performed by a large range of scientific and engineering codes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This manuscript describes the application and further development of the TAP technique in kinetic characterization of heterogeneous catalysis. The major application of TAP systems is to study mechanisms, kinetics and transport phenomena in heterogeneous catalysis, all of which is made possible by the sub-millisecond time resolution. Furthermore, the kinetic information obtained can be used to gain an insight into the mechanism occurring over the catalyst system. This is advantageous as heterogeneous catalysts with an improved efficiency can be developed as a result. TAP kinetic studies are carried out at low pressure (~1x10-7 mbar) and TAP pulses are sufficiently small (1013-1015 molecules) so as to maintain this low pressure. The use of a small number of molecules in comparison to the total number of active sites means the state of the catalyst remains relatively unchanged. The use of the low intensity pulses also makes the pressure gradient negligible and so allows the TAP reactor system to operate in the Knudsen Diffusion regime, where gas-gas reactions are eliminated. Hence only gas-catalyst reactions are investigated and, by the use of moment analysis of observed exit flow, rate constants of elementary steps of the reaction can be obtained.

In this manuscript, two attempts to further the TAP technique are reported. Firstly, the work undertaken at QUB to attempt to control the number of molecules of condensable reagents that can be pulsed during a TAP pulse experiment is disclosed. Secondly, a collaborative project with SAI Ltd Manchester is discussed in a separate chapter, where technical details and validation of a customised time of flight mass spectrometer (ToF MS) for the QUB TAP-1 system are reported. A collaborative project with Cardiff Catalysis Institute focusing on the study of CO oxidation over hopcalite catalysts is also reported. The analysis of the experimental results has provided an insight into the possible mechanism of the oxidation of CO over these catalysts. A correction function has also been derived which accounts for the adsorption of reactant molecules over inert materials that are used for the reactor packing in TAP experiments. This function was then applied to the selective reduction of O2 in a H2 rich ethene feed, so that more accurate TAP moment based analysis could be conducted.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schrödinger equation for low-dimensionality systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The low-temperature low-pressure hydrogen based plasmas were used to study the influence of processes and discharge conditions on corrosion removal. The capacitive coupled RF discharge in the continuous or pulsed regime was used at operating pressure of 100-200 Pa. Plasma treatment was monitored by optical emission spectroscopy. To be able to study influence of various process parameters, the model corroded samples with and without sandy incrustation were prepared. The SEM-EDX analyzes were carried out to verify corrosion removal efficiency. Experimental conditions were optimized for the selected most frequent materials of original metallic archaeological objects (iron, bronze, copper, and brass). Chlorides removal is based on hydrogen ion reactions while oxides are removed mainly by neutral species interactions. A special focus was kept for the samples temperature because it was necessary to avoid any metallographic changes in the material structure. The application of higher power pulsed regime with low duty cycle seems be the best treatment regime. The low pressure hydrogen plasma is not applicable for objects with a very broken structure or for nonmetallic objects due to the non-uniform heat stress. Due to this fact, the new developed plasmas generated in liquids were applied on selected original archaeological glass materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A force field model of phosphorus has been developed based on density functional (DF) computations and experimental results, covering low energy forms of local tetrahedral symmetry and more compact (simple cubic) structures that arise with increasing pressure. Rules tailored to DF data for the addition, deletion, and exchange of covalent bonds allow the system to adapt the bonding configuration to the thermodynamic state. Monte Carlo simulations in the N-P-T ensemble show that the molecular (P-4) liquid phase, stable at low pressure P and relatively low temperature T, transforms to a polymeric (gel) state on increasing either P or T. These phase changes are observed in recent experiments at similar thermodynamic conditions, as shown by the close agreement of computed and measured structure factors in the molecular and polymer phases. The polymeric phase obtained by increasing pressure has a dominant simple cubic character, while the polymer obtained by raising T at moderate pressure is tetrahedral. Comparison with DF results suggests that the latter is a semiconductor, while the cubic form is metallic. The simulations show that the T-induced polymerization is due to the entropy of the configuration of covalent bonds, as in the polymerization transition in sulfur. The transition observed with increasing P is the continuation at high T of the black P to arsenic (A17) structure observed in the solid state, and also corresponds to a semiconductor to metal transition. (C) 2004 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reproducible modulations in low-pressure, inductively coupled discharges operating in chlorine and argon-chlorine mixtures have been observed and studied. Changes in the light output, floating potential, negative ion fraction, and charged particle densities were observed. Here we report two types of unstable operational modes in an inductively coupled discharge. On the one hand, when the discharge was matched, to minimize reflected power, instabilities were observed in argon-chlorine plasmas over limited operating conditions of input power and gas pressure. The instability window decreased with increasing chlorine content and was observed for chlorine concentrations between 30% and 60% only. However, when operating at pressures below 5 mTorr and the discharge circuit detuned to increase the reflected power, modulations were observed in a pure chlorine discharge. These modulations varied in nature from a series of sharp bursts to a very periodic behavior and can be controlled, by variation of the matching conditions, to produce an apparent pulsed plasma environment. (C) 2005 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic neutral loop discharges (NLDs) can be operated at significantly lower pressures than conventional radio-frequency (rf) inductively coupled plasmas (ICPs). These low pressure conditions are favourable for technological applications, in particular anisotropic etching. An ICP–NLD has been designed providing excellent diagnostics access for detailed investigations of fundamental mechanisms. Spatially resolved Langmuir probe measurements have been performed in the plasma production region (NL region) as well as in the remote application region downstream from the NL region. Depending on the NL gradient two different operation modes have been observed exhibiting different opportunities for control of plasma uniformity. The efficient operation at comparatively low pressures results in ionization degrees exceeding 1%. In this regime neutral dynamics has to be considered and can influence neutral gas and process uniformity. Neutral gas depletion through elevated gas temperatures and high ionization rates have been quantified. At pressures above 0.1 Pa, gas heating is the dominant depletion mechanism. At lower pressures neutral gas is predominantly depleted through high ionization rates and rapid transport of ions by ambipolar diffusion along the magnetic field lines. Non-uniform profiles of the ionization rate can, therefore, result in localized neutral gas depletion and non-uniform processing. We have also investigated the electron dynamics within the radio-frequency cycle using phase resolved optical emission spectroscopy and Thomson scattering. In these measurements electron drift phenomena along the NL torus have been identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrocarbon nanoparticles with diameters between 10 and 30 nanometres are created in a low pressure plasma combining capacitive and inductive power coupling. The particles are generated in the capacitive phase of the experiment and stay confined in the plasma in the inductive phase. The presence of these embedded particles induces a rotation of a particle-free region (void) around the symmetry axis of the reactor. The phenomenon is analysed using optical emission spectroscopy both line integrated and spatially resolved via an intensified charge coupled device camera. From these data, electron temperatures and densities are deduced. We find that the rotation of the void is driven by a tangential component of the ion drag force induced by an external static magnetic field. Two modes are observed: a fast rotation of the void in the direction opposite to that of the tangential component and a slow rotation in the same direction. The rotation speed decreases linearly with the size of the particles. In the fast mode the dependence on the applied magnetic field is weak and consequently the rotation speed can serve as a monitor to detect particle sizes in low temperature plasmas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A planar inductively coupled radio-frequency (rf) magnetic neutral loop discharge has been designed. It provides diagnostic access to both the main plasma production region as well as a remote plane for applications. Three coaxial coils are arranged to generate a specially designed inhomogeneous magnetic field structure with vanishing field along a ring in the discharge-the so-called neutral loop (NL). The plasma is generated by applying an oscillating rf electric field along the NL, induced through a four-turn, planar antenna operated at 13.56 MHz. Electron density and temperature measurements are performed under various parameter variations. Collisionless electron heating in the NL region allows plasma operation at comparatively low pressures, down to 10(-2) Pa, with a degree of ionization in the order of several per cent. Conventional plasma operation in inductive mode without applying the magnetic field is less efficient, in particular in the low pressure regime where the plasma cannot be sustained without magnetic fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Frequency coupling in multifrequency discharges is a complex nonlinear interaction of the different frequency components. An alpha-mode low pressure rf capacitively coupled plasma operated simultaneously with two frequencies is investigated and the coupling of the two frequencies is observed to greatly influence the excitation and ionization within the discharge. Through this, plasma production and sustainment are dictated by the corresponding electron dynamics and can be manipulated through the dual-frequency sheath. These mechanisms are influenced by the relative voltage and also the relative phase of the two frequencies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Comparisons of 2D fluid simulations with experimental measurements of Ar/Cl-2 plasmas in a low-pressure inductively coupled reactor are reported. Simulations show that the wall recombination coefficient of Cl atom (gamma) is a crucial parameter of the model and that neutral densities are very sensitive to its variations. The best agreement between model and experiment is obtained for gamma = 0.02, which is much lower than the value predicted for stainless steel walls (gamma = 0.6). This is consistent with reactor wall contaminations classically observed in such discharges. The electron density, negative ion fraction and Cl atom density have been investigated under various conditions of chlorine and argon concentrations, gas pressure and applied rf input power. The plasma electronegativity decreases with rf power and increases with chlorine concentration. At high pressure, the power absorption and distribution of charged particles become more localized below the quartz window. Although the experimental trends are well reproduced by the simulations, the calculated charged particle densities are systematically overestimated by a factor of 3-5. The reasons for this discrepancy are discussed in the paper.