224 resultados para Locally Compact Spaces


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we characterize surjective completely bounded disjointness preserving linear operators on Fourier algebras of locally compact amenable groups. We show that such operators are given by weighted homomorphisms induced by piecewise affine proper maps. © 2011 Elsevier Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We undertake a detailed study of the sets of multiplicity in a second countable locally compact group G and their operator versions. We establish a symbolic calculus for normal completely bounded maps from the space B(L-2(G)) of bounded linear operators on L-2 (G) into the von Neumann algebra VN(G) of G and use it to show that a closed subset E subset of G is a set of multiplicity if and only if the set E* = {(s,t) is an element of G x G : ts(-1) is an element of E} is a set of operator multiplicity. Analogous results are established for M-1-sets and M-0-sets. We show that the property of being a set of multiplicity is preserved under various operations, including taking direct products, and establish an Inverse Image Theorem for such sets. We characterise the sets of finite width that are also sets of operator multiplicity, and show that every compact operator supported on a set of finite width can be approximated by sums of rank one operators supported on the same set. We show that, if G satisfies a mild approximation condition, pointwise multiplication by a given measurable function psi : G -> C defines a closable multiplier on the reduced C*-algebra G(r)*(G) of G if and only if Schur multiplication by the function N(psi): G x G -> C, given by N(psi)(s, t) = psi(ts(-1)), is a closable operator when viewed as a densely defined linear map on the space of compact operators on L-2(G). Similar results are obtained for multipliers on VN(C).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present new methods for constructing and analysing formulations of locally reacting surfaces that can be used in finite difference time domain (FDTD) simulations of acoustic spaces. Novel FDTD formulations of frequency-independent and simple frequency-dependent impedance boundaries are proposed for 2D and 3D acoustic systems, including a full treatment of corners and boundary edges. The proposed boundary formulations are designed for virtual acoustics applications using the standard leapfrog scheme based on a rectilinear grid, and apply to FDTD as well as Kirchhoff variable digital waveguide mesh (K-DWM) methods. In addition, new analytic evaluation methods that accurately predict the reflectance of numerical boundary formulations are proposed. numerical experiments and numerical boundary analysis (NBA) are analysed in time and frequency domains in terms of the pressure wave reflectance for different angles of incidence and various impedances. The results show that the proposed boundary formulations structurally adhere well to the theoretical reflectance. In particular, both reflectance magnitude and phase are closely approximated even at high angles of incidence and low impedances. Furthermore, excellent agreement was found between the numerical boundary analysis and the experimental results, validating both as tools for researching FDTD boundary formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give an example of a complete locally convex m-topology on the algebra of infinite differentiable functions on [0, 1] which is strictly coarser than the natural Frechet-topology but finer than the topology of pointwise convergence. A similar construction works on the algebra of continuous functions on [0, 1]. Using this examples we can separate different notions of diffotopy and homotopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An example of a sigma -compact infinite-dimensional pre-Hilbert space H is constructed such that any continuous linear operator T: H --> H is of the form T = lambdaI + F for some lambda is an element of R and for a finite-dimensional continuous linear operator F. A class of simple examples of pre-Hilbert spaces nonisomorphic to their closed hyperplanes is given. A sigma -compact pre-Hilbert space H isomorphic to H x R x R and nonisomorphic to H x R is also constructed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents methods for simulating room acoustics using the finite-difference time-domain (FDTD) technique, focusing on boundary and medium modeling. A family of nonstaggered 3-D compact explicit FDTD schemes is analyzed in terms of stability, accuracy, and computational efficiency, and the most accurate and isotropic schemes based on a rectilinear grid are identified. A frequency-dependent boundary model that is consistent with locally reacting surface theory is also presented, in which the wall impedance is represented with a digital filter. For boundaries, accuracy in numerical reflection is analyzed and a stability proof is provided. The results indicate that the proposed 3-D interpolated wideband and isotropic schemes outperform directly related techniques based on Yee's staggered grid and standard digital waveguide mesh, and that the boundary formulations generally have properties that are similar to that of the basic scheme used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to Grivaux, the group GL(X) of invertible linear operators on a separable infinite dimensional Banach space X acts transitively on the set s (X) of countable dense linearly independent subsets of X. As a consequence, each A? s (X) is an orbit of a hypercyclic operator on X. Furthermore, every countably dimensional normed space supports a hypercyclic operator. Recently Albanese extended this result to Fréchet spaces supporting a continuous norm. We show that for a separable infinite dimensional Fréchet space X, GL(X) acts transitively on s (X) if and only if X possesses a continuous norm. We also prove that every countably dimensional metrizable locally convex space supports a hypercyclic operator.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the construction of linear-in-the-parameters (LITP) models for multi-output regression problems. Most existing stepwise forward algorithms choose the regressor terms one by one, each time maximizing the model error reduction ratio. The drawback is that such procedures cannot guarantee a sparse model, especially under highly noisy learning conditions. The main objective of this paper is to improve the sparsity and generalization capability of a model for multi-output regression problems, while reducing the computational complexity. This is achieved by proposing a novel multi-output two-stage locally regularized model construction (MTLRMC) method using the extreme learning machine (ELM). In this new algorithm, the nonlinear parameters in each term, such as the width of the Gaussian function and the power of a polynomial term, are firstly determined by the ELM. An initial multi-output LITP model is then generated according to the termination criteria in the first stage. The significance of each selected regressor is checked and the insignificant ones are replaced at the second stage. The proposed method can produce an optimized compact model by using the regularized parameters. Further, to reduce the computational complexity, a proper regression context is used to allow fast implementation of the proposed method. Simulation results confirm the effectiveness of the proposed technique. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Existing compact routing schemes, e.g., Thorup and Zwick [SPAA 2001] and Chechik [PODC 2013], often have no means to tolerate failures, once the system has been setup and started. This paper presents, to our knowledge, the first self-healing compact routing scheme. Besides, our schemes are developed for low memory nodes, i.e., nodes need only O(log2 n) memory, and are thus, compact schemes.
We introduce two algorithms of independent interest: The first is CompactFT, a novel compact version (using only O(log n) local memory) of the self-healing algorithm Forgiving Tree of Hayes et al. [PODC 2008]. The second algorithm (CompactFTZ) combines CompactFT with Thorup-Zwick’s treebased compact routing scheme [SPAA 2001] to produce a fully compact self-healing routing scheme. In the self-healing model, the adversary deletes nodes one at a time with the affected nodes self-healing locally by adding few edges. CompactFT recovers from each attack in only O(1) time and ∆ messages, with only +3 degree increase and O(log∆) graph diameter increase, over any sequence of deletions (∆ is the initial maximum degree).
Additionally, CompactFTZ guarantees delivery of a packet sent from sender s as long as the receiver has not been deleted, with only an additional O(y log ∆) latency, where y is the number of nodes that have been deleted on the path between s and t. If t has been deleted, s gets informed and the packet removed from the network.