54 resultados para Litter decomposition
Resumo:
Biological activities greatly influence the formation of many soils, especially forest soils under cool humid climates. The objective of this study was to investigate the effects of vegetation and soil biota on the formation of selected soils. Field morphology, micromorphology, and carbon and organic matter analysis were determined on six Podzols (Spodosols) and two Cambisols (Inceptisols) from the eastern United States and north-east Scotland. Humification of plant material by soil fauna and fungi occurs in all organic horizons. Thick organic coatings are observed on soil peds and rock fragments from the E1 to the Bs horizon in a Haplic Podzol from Clingmans Dome Mt., TN. Thin sections reveal large accumulations of root material in different stages of decomposition in the spodic horizons of a Haplic Podzol from Whiteface Mt., NY. Organic carbon ranges from 5.4 to 8.5% in the spodic B horizons of the Whiteface Mt. Podzol. Earthworms and enchytraeids have a great effect on the structure of the surface and subsurface horizons in the Dystric Cambisols from Huntly and Clashindarroch Forests, Scotland and a Cambic Podzol from the Corrie Burn Basin, Scotland. Podzols from Speymouth Forest, Scotland (Gleyic Podzol), Cling-mans Dome Mt., and Whiteface Mt. have thick organic horizons. The Podzols from the Flatwoods in Georgia, the Pine Barrens in New Jersey, the Corrie Burn Basin, and the Cambisol from Huntly Forest have only A horizons at the surface. The Clashindarroch Forest soil has a very thin organic horizon. Warm and humid climates and sandy parent material are responsible for thick E horizons and lack of thick organic horizons in the Flatwoods (Carbic Podzol) and Pine Barrens (Ferric Podzol) soils. Earthworms and enchytraeids thrive in the Corrie Burn Basin and Huntly Forest soils due to the vegetation and the highly weathered basic parent material. The site at Clashindarroch once carried oak, and then birch forest, both of which produce a mild litter and also encourage earthworm and enchytraeids. This fauna is responsible for much mixing of the topsoil. The present conifer vegetation will eventually produce a deep litter and cause podzolization.
Resumo:
Ionic liquids are organic salts with low melting points. Many of these compounds are liquid at room temperature in their pure state. Since they have negligible vapor pressure and would not contribute to air pollution, they are being intensively investigated for a variety of applications, including as solvents for reactions and separations, as non-volatile electrolytes, and as heat transfer fluids. We present melting temperatures, glass transition temperatures, decomposition temperatures, heat capacities, and viscosities for a large series of pyridinium-based ionic liquids. For comparison, we include data for several imidazolium and quaternary ammonium salts. Many of the compounds do not crystallize, but form glasses at temperatures between 188 K and 223 K. The thermal stability is largely determined by the coordinating ability of the anion, with ionic liquids made with the least coordinating anions, like bis(trifluoromethylsulfonyl)imide, having the best thermal stability. In particular, dimethylaminopyridinium bis(trifluoromethylsulfonyl)imide salts have some of the best thermal stabilities of any ionic liquid compounds investigated to date. Heat capacities increase approximately linearly with increasing molar mass, which corresponds with increasing numbers of translational, vibrational, and rotational modes. Viscosities generally increase with increasing number and length of alkyl substituents on the cation, with the pyridinium salts typically being slightly more viscous than the equivalent imidazolium compounds. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Invasive species may threaten the fundamental role played by native macroinvertebrate shredders in determining energy flow and the trophic dynamics of freshwater ecosystems. Functionally, amphipods have long been regarded as mainly shredders, but they are increasingly recognized as major predators of other macroinvertebrate taxa. Furthermore, intraguild predation (IGP) between native and invasive amphipods underlies many species displacements. We used laboratory mesocosms to investigate what might happen to shredders and leaf-litter processing in water bodies invaded by the highly predatory Ponto-Caspian amphipod Dikerogammarus villosus, which is spreading rapidly throughout Europe and may soon invade the North American Great Lakes. The leaf-shredding efficiency of D. villosus was significantly lower than that of 3 Gammarus species (2 native and 1 invasive) that D. villosus has either already displaced or may be currently displacing in The Netherlands. In addition, D. villosus was a major predator of all of these native and invasive amphipod shredders and of a common isopod shredder Asellus aquaticus. Leaf processing in Gammarus and Asellus mesocosms declined rapidly in the presence of D. villosus and ceased altogether within 4 d because by then, all potential shredders had been killed and consumed. Furthermore, the shredding efficiency of surviving amphipods and isopods declined significantly within 2 d of the release of D. villosus, a result indicating that predator-avoidance behavior may override leaf processing. We discuss the implications of these direct and indirect effects of D. villosus invasions and species displacements on community structure and litter processing in aquatic ecosystems. © 2011 The North American Benthological Society.
--------------------------------------------------------------------------------
Reaxys Database Information|
Resumo:
Real-time matrix inversion is a key enabling technology in multiple-input multiple-output (MIMO) communications systems, such as 802.11n. To date, however, no matrix inversion implementation has been devised which supports real-time operation for these standards. In this paper, we overcome this barrier by presenting a novel matrix inversion algorithm which is ideally suited to high performance floating-point implementation. We show how the resulting architecture offers fundamentally higher performance than currently published matrix inversion approaches and we use it to create the first reported architecture capable of supporting real-time 802.11n operation. Specifically, we present a matrix inversion approach based on modified squared Givens rotations (MSGR). This is a new QR decomposition algorithm which overcomes critical limitations in other QR algorithms that prohibits their application to MIMO systems. In addition, we present a novel modification that further reduces the complexity of MSGR by almost 20%. This enables real-time implementation with negligible reduction in the accuracy of the inversion operation, or the BER of a MIMO receiver based on this.
Resumo:
The Temporal Analysis of Products (TAP) technique has been used to investigate the mechanism involved in the catalytic decomposition of NH3 over a series of catalysts consisting of activated carbon supported Ru (promoted and non-promoted with Na) and over an activated carbon supported Ir. An extensive study of the role played by both the support and the promoter in the
Resumo:
Ruthenium red, a di-mu-oxo-bridged ruthenium complex, and its oxidised form, ruthenium brown, have been studied as possible homogeneous redox catalysts for the oxidation of water to O2 by Ce(IV) ions in H2SO4 and HCIO4. In both media the Ce(IV) ions oxidised the ruthenium red to brown and, with excess of Ce(IV), decomposed the ruthenium brown irreversibly to product(s) with three weak absorption bands at 390, 523 and 593 nm. Only in HCIO4 did the decomposition product(s) appear to act as a stable O2 catalyst. Spectral evidence tentatively suggests that the active catalyst may be a hydrolysed Ru(IV) polymeric species. The rate of catalysis was proportional to the initial concentration of ruthenium red/brown and the activation energy was determined as 36 +/- 1 kJ mol-1 over the temperature range ambient to ca. 50-degrees-C. At temperatures greater than 50-degrees-C the O2 catalyst undergoes an irreversible thermal decomposition reaction.
Resumo:
In this paper, a novel approach to automatically sub-divide a complex geometry and apply an efficient mesh is presented. Following the identification and removal of thin-sheet regions from an arbitrary solid using the thick/thin decomposition approach developed by Robinson et al. [1], the technique here employs shape metrics generated using local sizing measures to identify long-slender regions within the thick body. A series of algorithms automatically partition the thick region into a non-manifold assembly of long-slender and complex sub-regions. A structured anisotropic mesh is applied to the thin-sheet and long-slender bodies, and the remaining complex bodies are filled with unstructured isotropic tetrahedra. The resulting semi-structured mesh possesses significantly fewer degrees of freedom than the equivalent unstructured mesh, demonstrating the effectiveness of the approach. The accuracy of the efficient meshes generated for a complex geometry is verified via a study that compares the results of a modal analysis with the results of an equivalent analysis on a dense tetrahedral mesh.
Resumo:
The phase instability of bismuth perovskite (BiMO3), where M is a ferromagnetic cation, is exploited to create self-assembled magnetic oxide nanocrystal arrays on oxide supports. Conditions during pulsed laser deposition are tuned so as to induce complete breakdown of the perovskite precursor into bismuth oxide (Bi2 O3 ) and metal oxide (M-Ox ) pockets. Subsequent cooling in vacuum volatizes the Bi2 O3 leaving behind an array of monodisperse nanocrystals. In situ reflective high energy electron diffraction beam is exploited to monitor the synthesis in real-time. Analysis of the patterns confi rms the phase separation and volatization process. Successful synthesis of M-Ox, where M = Mn, Fe, Co, and Cr, is shown using this template-free facile approach. Detailed magnetic characterization of nanocrystals is carried out to reveal the functionalities such as magnetic anisotropy as well as larger than bulk moments, as expected in these oxide nanostructures.