44 resultados para Ligand-derived Peptides
Resumo:
Multiple bradykinin-related peptides including a novel bradykinin structural variant, (Val1)-bradykinin, have been identified from the defensive skin secretion of Guenther's frog, Hylarana guentheri by a tandem mass spectrometry method. Subsequently, four different preprobradykinin cDNAs, which encoded multiple bradykinin copies and its structural variants, were consistently cloned from a skin derived cDNA library. These preprobradykinin cDNAs showed little structural similarity with mammalian kininogens and the kininogens from the skin of toads, but have regions that are highly conserved in the kininogens from another ranid frog, Odorrana schmackeri. Alignment of these preprobradykinins revealed that preprobradykinin 1, 2 and 3 may derive from a single gene by alternative exon splicing.
Resumo:
Bradykinin and related peptides are found in the defensive skin secretions of many frogs and toads. While the physiological roles of bradykinin-related peptides in sub-mammalian vertebrates remains obscure, in mammals, including humans, canonical bradykinin mediates a multitude of biological effects including the proliferation of many types of cancer cell. Here we have examined the effect of the bradykinin B2 receptor antagonist peptide, kinestatin, originally isolated by our group from the skin secretion of the giant fire-bellied toad, Bombina maxima, on the proliferation of the human prostate cancer cell lines, PC3, DU175 and LnCAP. The bradykinin receptor status of all cell lines investigated was established through PCR amplification of transcripts encoding both B1 and B2 receptor subtypes. Following this demonstration, all cell lines were grown in the presence or absence of kinestatin and several additional bradykinin receptor antagonists of amphibian skin origin and the effects on proliferation of the cell lines was investigated using the MTT assay and by counting of the cells in individual wells of 96-well plates. All of the amphibian skin secretion-derived bradykinin receptor antagonists inhibited proliferation of all of the prostate cancer lines investigated in a dose-dependent manner. In addition, following incubation of peptides with each cell line and analysis of catabolites by mass spectrometry, it was found that bradykinin was highly labile and each antagonist was highly stable under the conditions employed. Bradykinin signalling pathways are thus worthy of further investigation in human prostate cancer cell lines and the evidence presented here would suggest the testing of efficacy in animal models of prostate cancer as a positive outcome could lead to a drug development programme for the treatment of this disease.
Resumo:
Helokinestatins 1–5 represent a novel family of bradykinin antagonist peptides originally isolated from the venom of the Gila Monster, Heloderma suspectum. We found that they were encoded in tandem along with a single copy of C-type natriuretic peptide (CNP), by two different but almost identical biosynthetic precursors that were cloned from a venom-derived cDNA library. Here we have applied the same strategy to the venom of a related species, the Mexican beaded lizard, Heloderma horridum. Lyophilised venom was used as a surrogate tissue to generate a cDNA library that was interrogated with primers from the previous study and for reverse phase HPLC fractionation. The structure of a single helokinestatin precursor was obtained following sequencing of 20 different clones. The open-reading frame contained 196 amino acid residues, somewhat greater than the 177–178 residues of the corresponding helokinestatin precursors in H. suspectum. The reason for this difference in size was the insertion of an additional domain of 18 amino acid residues encoding an additional copy of helokinestatin-3. Helokinestatin-6 (GPPFNPPPFVDYEPR) was a novel peptide from this precursor identified in venom HPLC fractions. A synthetic replicate of this peptide antagonised the relaxation effect of bradykinin on rat arterial smooth muscle. The novel peptide family, the helokinestatins, have been shown to be present in the venom of H. horridum and to be encoded by a single precursor of different structure to those from H. suspectum. Studies such as this reveal the naturally-selected structures of bioactive peptides that have been optimised for purpose and provide the scientist with a natural analogue library for pharmacological investigation.
Resumo:
The tachykinins hylambatin and (Thr)11-hylambatin have been isolated from the defensive skin secretion of the African hyperoliid frog, Kassina maculata,. Hylambatin (DPPDPNRFYGMMamide) is revised in structure from the original sequence by a single site substitution (Asn/Asp at position 6), and (Thr)11-hylambatin, a novel tachykinin, differs in structure from hylambatin by a single Thr/Met substitution. (Thr)11-hylambatin is five- to ten-fold more abundant than hylambatin in secretions. Synthetic replicates of both peptides were active in smooth muscle preparations including the rat tail artery, rat ileum and bovine trachea. While hylambatin displayed activity consistent with an NK1-receptor ligand, (Thr)11-hylambatin was more active than either substance P or neurokinin A in both NK1- and NK-2 receptor rich preparations. Incorporation of a threoninyl residue rather than the canonical leucyl residue at the penultimate position in both substance P and neurokinin A, generated active ligands in both arterial and intestinal smooth muscle preparations. Hylambatin precursor cDNAs, designated HYBN-1 and HYBN-2, respectively, were cloned from a skin library by 3'- and 5'-RACE reactions. Both were highly-homologous containing open-reading frames of 66 amino acids encoding single copies of either hylambatin or (Thr)11-hylambatin. These data reveal a hitherto unrecognized structure/activity attribute of mammalian tachykinin receptors revealed though discovery of a novel amphibian skin-derived, site-substituted peptide ligand.
Resumo:
Amphibian skin secretions are rich sources of biologically-active peptides and several studies involving molecular cloning of their biosynthetic precursors have revealed that many exhibit highly-conserved domain architectures with an associated high degree of primary structural conservation of the signal peptides. This conservation of primary structure is reflected at the level of nucleotide sequence — a finding that has permitted our group to design primers to these sites facilitating “shotgun” cloning using cDNA libraries from uninvestigated species. Here we describe the results of such an approach using a skin secretion-derived cDNA library from the Fujian large-headed frog, Limnonectes fujianensis, a completely unstudied species. In over 50 clones studied by this approach, 12 were found to encode peptides of different primary structure. Representatives of 5 different families of antimicrobial peptides derived from the skins of ranid frogs were found and these were brevinin-1 (n = 3), the ranatuerin-2 (n = 3), esculentin-2 (n = 1), temporin (n = 1) and chensinin (n = 1). Three clones encoded peptides that were novel with no homologues present in contemporary on-line databases. These included two related 16-mer peptides, named peptides SC-16a and b, and an unrelated 24-mer, named peptide AG-24. Preliminary biological characterisation of SC-16a has demonstrated an antimicrobial activity against Gram-negative bacteria with a minimal inhibitory concentration of 35 µM with no observable haemolysis up to 200 µM. This finding may suggest that this peptide represents a novel class of antimicrobial with little effect on eukaryotic membranes.
Resumo:
The antimicrobial peptides of amphibian skin secretions are proposed to aid survival in microbe-rich environments. While many amphibians inhabit such environments, other such as the Wuyi Mountain torrent frog, Amolops wuyiensis, live in pristine waters flowing from underground mountain springs. This species thus represents an interesting model in which to study antimicrobial peptides. “Shotgun” cloning of a skin-derived cDNA library from this species identified transcripts encoding a brevinin-1 and a ranatuerin-2. Peptides with coincident molecular masses to both predicted mature peptides were identified in HPLC fractions of skin secretion. Synthetic replicates of both peptides were generated by solid-phase peptide synthesis and tested for activity using Staphylococcus aureus, Escherichia coli and Candida albicans. The brevinin was found to be broad-spectrum and potent with minimum inhibitory concentrations (MICs) of 24 µM (Sa), 5 µM (Ec) and 20 µM (Ca). In contrast, the ranatuerin was less effective and of narrower spectrum with an MIC > 200 µM for Sa, 40 µM (Ec) and 120 µM (Ca). Thus this species of amphibian that lives in a pristine environment does indeed possess at least one potent and broad-spectrum antimicrobial peptide in its skin secretion arsenal. This phenomenon could be explained in several ways. Firstly, it may represent an ancestral peptide required when the stem species inhabited microbe-rich environments. However, there is mounting evidence for the second reason, that suggests the function of such peptides is not primarily in antimicrobial defence.
Resumo:
A synthesis of new bidentate pyridines has been developed, starting from ?-pinene. A copper complex of the pyridine-oxazoline ligands catalyzes asym. allylic oxidn. of cyclic olefins with good conversion rates and acceptable enantioselectivity (?67% ee). The imidazolium salt I has been identified as a precursor of the N,N'-unsym. N-heterocyclic carbene ligand, which upon complexation with palladium, catalyzed the intramol. amide enolate ?-arylation leading to oxindole in excellent yield but with low enantioselectivity.
Resumo:
A radioiodinated ligand, [125I]SB-236636 [(S)-(-)3-[4-[2-[N-(2-benzoxazolyl)-N-methylamino]ethoxy]3-[125I]iodophenyl]2-ethoxy propanoic acid], which is specific for the ? isoform of the peroxisomal proliferator activated receptor (PPAR?), was developed. [125I]SB-236636 binds with high affinity to full-length human recombinant PPAR?1 and to a GST (glutathione S-transferase) fusion protein contg. the ligand binding domain of human PPAR?1 (KD = 70 nM). Using this ligand, the authors characterized binding sites in adipose-derived cells from rat, mouse and humans. In competition expts., rosiglitazone (BRL-49653), a potent antihyperglycemic agent, binds with high affinity to sites in intact adipocytes (IC50 = 12, 4 and 9 nM for rat, 3T3-L1 and human adipocytes, resp.). Binding affinities (IC50) of other thiazolidinediones for the ligand binding domain of PPAR?1 were comparable with those detd. in adipocytes and reflected the rank order of potencies of these agents as stimulants of glucose transport in 3T3-L1 adipocytes and antihyperglycemic agents in vivo: rosiglitazone > pioglitazone > troglitazone. Competition of [125I]SB-236636 binding was stereoselective in that the IC50 value of SB-219994, the (S)-enantiomer of an ?-trifluoroethoxy propanoic acid insulin sensitizer, was 770-fold lower than that of SB-219993 [(R)-enantiomer] at recombinant human PPAR?1. The higher binding affinity of SB-219994 also was evident in intact adipocytes and reflected its 100-fold greater potency as an antidiabetic agent. The results strongly suggest that the high-affinity binding site for [125I]SB-236636 in intact adipocytes is PPAR? and that the pharmacol. of insulin-sensitizer binding in rodent and human adipocytes is very similar and, moreover, predictive of antihyperglycemic activity in vivo.
Resumo:
From defensive skin secretions acquired from two species of African hyperoliid frogs, Kassina maculata and Kassina senegalensis, we have isolated two structurally related, C-terminally amidated tridecapeptides of novel primary structure that exhibit a broad spectrum of biological activity. In reflection of their structural novelty and species of origin, we named the peptides kassorin M (FLEGLLNTVTGLLamide; 1387.8 Da) and kassorin S (FLGGILNTITGLLamide; 1329.8 Da), respectively. The primary structure and organisation of the biosynthetic precursors of kassorins M and S were deduced from cloned skin secretion-derived cDNA. Both open-reading frames encoded a single copy of kassorin M and S, respectively, located at the C-terminus. Kassorins display limited structural similarities to vespid chemotactic peptides (7/13 residues), temporin A (5/13 residues), the N-terminus of Lv-ranaspumin, a foam nest surfactant protein of the frog, Leptodactylus vastus, and an N-terminal domain of the equine sweat surfactant protein, latherin. Both peptides elicit histamine release from rat peritoneal mast cells. However, while kassorin S was found to possess antibacterial activity against Staphylococcus aureus, kassorin M was devoid of such activity. In contrast, kassorin M was found to contract the smooth muscle of guinea pig urinary bladder (EC50 = 4.66 nM) and kassorin S was devoid of this activity. Kassorins thus represent the prototypes of a novel family of peptides from the amphibian innate immune system as occurring in defensive skin secretions.
Resumo:
Amphibian skin secretions are rich sources of biologically-active peptides with antimicrobial peptides predominating in many species. Several studies involving molecular cloning of biosynthetic precursor-encoding cDNAs from skin or skin secretions have revealed that these exhibit highly-conserved domain architectures with an unusually high degree of conserved nucleotide and resultant amino acid sequences within the signal peptides. This high degree of nucleotide sequence conservation has permitted the design of primers complementary to such sites facilitating “shotgun” cloning of skin or skin secretion-derived cDNA libraries from hitherto unstudied species. Here we have used such an approach using a skin secretion-derived cDNA library from an unstudied species of Chinese frog – the Fujian large-headed frog, Limnonectes fujianensis – and have discovered two 16-mer peptides of novel primary structures, named limnonectin-1Fa (SFPFFPPGICKRLKRC) and limnonectin-1Fb (SFHVFPPWMCKSLKKC), that represent the prototypes of a new class of amphibian skin antimicrobial peptide. Unusually these limnonectins display activity only against a Gram-negative bacterium (MICs of 35 and 70 µM) and are devoid of haemolytic activity at concentrations up to 160 µM. Thus the “shotgun” cloning approach described can exploit the unusually high degree of nucleotide conservation in signal peptide-encoding domains of amphibian defensive skin secretion peptide precursor-encoding cDNAs to rapidly expedite the discovery of novel and functional defensive peptides in a manner that circumvents specimen sacrifice without compromising robustness of data
Resumo:
This focused review article discusses in detail, all available high-resolution small molecule ligand/G-quadruplex structural data derived from crystallographic and NMR based techniques, in an attempt to understand key factors in ligand binding and to highlight the biological importance of these complexes. In contrast to duplex DNA, G-quadruplexes are four-stranded nucleic acid structures folded from guanine rich repeat sequences stabilized by the stacking of guanine G-quartets and extensive Watson-Crick/Hoogsteen hydrogen bonding. Thermally stable, these topologies can play a role in telomere regulation and gene expression. The core structures of G-quadruplexes form stable scaffolds while the loops have been shown, by the addition of small molecule ligands, to be sufficiently adaptable to generate new and extended binding platforms for ligands to associate, either by extending G-quartet surfaces or by forming additional planar dinucleotide pairings. Many of these structurally characterised loop rearrangements were totally unexpected opening up new opportunities for the design of selective ligands. However these rearrangements do significantly complicate attempts to rationally design ligands against well defined but unbound topologies, as seen for the series of napthalene diimides complexes. Drawing together previous findings and with the introduction of two new crystallographic quadruplex/ligand structures we aim to expand the understanding of possible structural adaptations available to quadruplexes in the presence of ligands, thereby aiding in the design of new selective entities. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Fusion process is known to be the initial step of viral infection and hence targeting the entry process is a promising strategy to design antiviral therapy. The self-inhibitory peptides derived from the enveloped (E) proteins function to inhibit the proteinprotein interactions in the membrane fusion step mediated by the viral E protein. Thus, they have the potential to be developed into effective antiviral therapy. Herein, we have developed a Monte Carlo-based computational method with the aim to identify and optimize potential peptide hits from the E proteins. The stability of the peptides, which indicates their potential to bind in situ to the E proteins, was evaluated by two different scoring functions, dipolar distance-scaled, finite, ideal-gas reference state and residue-specific all-atom probability discriminatory function. The method was applied to a-helical Class I HIV-1 gp41, beta-sheet Class II Dengue virus (DENV) type 2 E proteins, as well as Class III Herpes Simplex virus-1 (HSV-1) glycoprotein, a E protein with a mixture of a-helix and beta-sheet structural fold. The peptide hits identified are in line with the druggable regions where the self-inhibitory peptide inhibitors for the three classes of viral fusion proteins were derived. Several novel peptides were identified from either the hydrophobic regions or the functionally important regions on Class II DENV-2 E protein and Class III HSV-1 gB. They have potential to disrupt the proteinprotein interaction in the fusion process and may serve as starting points for the development of novel inhibitors for viral E proteins.
Resumo:
The skin secretions of frogs and toads (Anura) have long been a known source of a vast abundance of bioactive substances. In the past decade, transcriptome data of the granular glands of anuran skin has given new impetus to investigations of the putative constituent peptides. Alytes obstetricans was recently investigated and novel peptides with antimicrobial activity were isolated and functionally characterised. However, genetic data for the evolutionarily ancient lineage to which Alytes belongs (midwife toads; Alytidae) remains unavailable.
Here we present the first such genetic data for Alytidae, derived via the granular gland transcriptome of a closely-related species of midwife toad, Alytes maurus. First, we present nucleotide sequences of the entire peptide precursors for four novel antimicrobial peptides (AMPs). The two precursors resemble those from Bombinatoridae in both their structural architecture and amino acid sequence. Each precursor comprises two AMPs as tandem repeats, with a member of the alyteserin-1 family (alyteserin-1Ma: GFKEVLKADLGSLVKGIAAHVAN-NH2 or alyteserin-1Mb: GFKEVLKAGLGSLVKGIPAHVAN-NH2) followed by its corresponding member from the alyteserin-2 family (alyteserin-2Ma: FIGKLISAASGLLSHL-NH2 or alyteserin-2Mb: ILGAIIPLVSGLLSHL-NH2). Synthetic replicates of the four AMPs possessed minimal inhibitory concentrations (MICs) ranging from 9.5 to 300 µM, with the most potent being alyteserin-2Ma. Second, we also cloned the cDNA encoding an alytesin precursor, with the active alytesin exhibiting high sequence identity to bombesin-related peptides from other frogs. All putative mature peptide sequences were confirmed to be present in the skin secretion via LC/MS.
The close structural resemblance of the alyteserin genes that we isolated for A. maurus with those of Bombina provide independent molecular evidence for a close evolutionary relationship between these genera as well as more support for the convergent evolution of the AMP system within anurans. In contrast to the more evolutionarily conserved nature of neuropeptides (including alytesin, which we also isolated), the more variable nature of the AMP system together with the sporadic distribution of AMPs among anuran amphibians fuels in part our hypothesis that the latter system was co-opted secondarily to fulfil a function in the innate immune system, having originally evolved for defence against potential macropredators.