148 resultados para Lenclos, Ninon de, 1620-1705
Resumo:
Key pre-distribution schemes have been proposed as means to overcome Wireless Sensor Networks constraints such as limited communication and processing power. Two sensor nodes can establish a secure link with some probability based on the information stored in their memories though it is not always possible that two sensor nodes may set up a secure link. In this paper, we propose a new approach that elects trusted common nodes called ”Proxies” which reside on an existing secure path linking two sensor nodes. These sensor nodes are used to send the generated key which will be divided into parts (nuggets) according to the number of elected proxies. Our approach has been assessed against previously developed algorithms and the results show that our algorithm discovers proxies more quickly which are closer to both end nodes, thus producing shorter path lengths. We have also assessed the impact of our algorithm on the average time to establish a secure link when the transmitter and receiver of the sensor nodes are ”ON”. The results show the superiority of our algorithm in this regard. Overall, the proposed algorithm is well suited for Wireless Sensor Networks.
Resumo:
Indoor wireless network based client localisation requires the use of a radio map to relate received signal strength to specific locations. However, signal strength measurements are time consuming, expensive and usually require unrestricted access to all parts of the building concerned. An obvious option for circumventing this difficulty is to estimate the radio map using a propagation model. This paper compares the effect of measured and simulated radio maps on the accuracy of two different methods of wireless network based localisation. The results presented indicate that, although the propagation model used underestimated the signal strength by up to 15 dB at certain locations, there was not a signigicant reduction in localisation performance. In general, the difference in performance between the simulated and measured radio maps was around a 30 % increase in rms error
Resumo:
The performance of a very low loss frequency selective surface (FSS) comprising two air spaced planar arrays of linear slot elements is reported. The beamsplitter generates a low loss passband response with a very sharp transmission roll-off with frequency. Simulated and measured results in the 30 GHz and 300 GHz wavebands are used to quantify the performance improvement compared to a conventional multilayer dielectrically backed conducting ring FSS. The paper also discusses the effect of the array dimensions on the passband width and filter roll-off rate.
Resumo:
Bodyworn antennas are found in a wide range of medical, military and personal communication applications, yet reliable communication from the surface of the human body still presents a range of engineering challenges. At UHF and microwave frequencies, bodyworn antennas can suffer from reduced efficiency due to electromagnetic absorption in tissue, radiation pattern fragmentation and variations in feed-point impedance. The significance and nature of these effects are system specific and depend on the operating frequency, propagation environment and physical constraints on the antenna itself. This paper describes how numerical electromagnetic modelling techniques such as FDTD (finite-difference time-domain) can be used in the design of bodyworn antennas. Examples are presented for 418 MHz, 916 .5 MHz and 2 . 45 GHz, in the context of both biomedical signalling and wireless personal-area networking applications such as the Bluetooth(TM)* wireless technology.
Resumo:
RAIRS experiments have been performed to investigate the adsorption of NO on Pt{211}. Results show that adsorption is complex and strongly temperature dependent. At 307 K, three bands are seen at saturation with frequencies of 1801, 1609, and 1576 cm(-1). However, at 120 K only two bands, at 1688 and 1620 cm(-1), are observed. To help with the assignment of these vibrational bands, DFT calculations were also performed. The calculations show that a bridged NO species, bonded to the step edge, is the most stable species on the surface and gives rise to the band observed at 1610-1620 cm(-1). The calculations also suggest that the temperature dependence of NO adsorption on Ptf{211} can be assigned to NO dissociation which occurs at room temperature but not at 120 K. In particular, the RAIRS band observed at 1801 cm(-1), which is observed on adsorption at 307 K but not at 120 K, is tentatively assigned to the formation of an O-NO complex. This species forms when a NO molecule bonds on top of an O atom, which results from the dissociation of NO on the Pt{211} surface at room temperature.
Resumo:
Quality of Service (QoS) support in IEEE 802.11-based ad hoc networks relies on the networks’ ability to estimate the available bandwidth on a given link. However, no mechanism has been standardized to accurately evaluate this resource. This remains one of the main issues open to research in this field. This paper proposes an available bandwidth estimation approach which achieves more accurate estimation when compared to existing research. The proposed approach differentiates the channel busy caused by transmitting or receiving from that caused by carrier sensing, and thus improves the accuracy of estimating the overlap probability of two adjacent nodes’ idle time. Simulation results testify the improvement of this approach when compared with well known bandwidth estimation methods in the literature.
Resumo:
In this paper, a reduced-complexity soft-interference-cancellation minimum mean-square-error.(SIC-MMSE) iterative equalization method for severe time-dispersive multiple-input-multiple-output (MIMO) channels is proposed. To mitigate the severe time dispersiveness of the channel, a single carrier with cyclic prefix is employed, and the equalization is per-formed in the frequency domain. This simplifies the challenging problem of equalization in MIMO channels due to both the intersymbol interference (ISI) and the coantenna interference (CAI). The proposed iterative algorithm works in two stages. The first stage estimates the transmitted frequency-domain symbols using a low-complexity SIC-MMSE equalizer. The second stage converts the estimated frequency-domain symbols in the time domain and finds their means and variances to incorporate in the SIC-MMSE equalizer in the next iteration. Simulation results show the bit-/symbol-error-rate performance of the SIC-MMSE equalizer, with and without coding, for various modulation schemes.
Resumo:
Data identification is a key task for any Internet Service Provider (ISP) or network administrator. As port fluctuation and encryption become more common in P2P traffic wishing to avoid identification, new strategies must be developed to detect and classify such flows. This paper introduces a new method of separating P2P and standard web traffic that can be applied as part of a data mining process, based on the activity of the hosts on the network. Unlike other research, our method is aimed at classifying individual flows rather than just identifying P2P hosts or ports. Heuristics are analysed and a classification system proposed. The accuracy of the system is then tested using real network traffic from a core internet router showing over 99% accuracy in some cases. We expand on this proposed strategy to investigate its application to real-time, early classification problems. New proposals are made and the results of real-time experiments compared to those obtained in the data mining research. To the best of our knowledge this is the first research to use host based flow identification to determine a flows application within the early stages of the connection.
Resumo:
It is unclear how human immunodeficiency virus (HIV) type 1–specific immune responses in exposed seronegative (ESN) individuals differ from those in HIV-1–infected subjects. By use of overlapping peptides spanning Gag, Tat, Nef, Vif, Vpr, and Vpu, peripheral blood mononuclear cells from ESN individuals, their seropositive (SP) partners, and unexposed seronegative control subjects were screened for interferon-? production. Responses were more frequent (95.7% vs. 20%), of a higher magnitude (9-fold), and of wider breadth (median number of peptides recognized, 18 vs. 2.5) in SP than in ESN individuals. Peptides recognized by ESN individuals were less frequently recognized by their SP partners. SP subjects infrequently recognized peptides from Vif, and such responses were subdominant; among ESN individuals, this HIV-1 protein was most frequently recognized. Immunodominant peptides recognized by SP subjects tended to be from relatively conserved regions, whereas peptides recognized by ESN individuals were associated with slow disease progression.
Resumo:
The cysteine protease cathepsin S (CatS) is involved in the pathogenesis of autoimmune disorders, atherosclerosis, and obesity. Therefore, it represents a promising pharmacological target for drug development. We generated ligand-based and structure-based pharmacophore models for noncovalent and covalent CatS inhibitors to perform virtual high-throughput screening of chemical databases in order to discover novel scaffolds for CatS inhibitors. An in vitro evaluation of the resulting 15 structures revealed seven CatS inhibitors with kinetic constants in the low micromolar range. These compounds can be subjected to further chemical modifications to obtain drugs for the treatment of autoimmune disorders and atherosclerosis.
Resumo:
Simple analytical formulas are introduced for the grid impedance of electrically dense arrays of square patches and for the surface impedance of high-impedance surfaces based on the dense arrays of metal strips or square patches over ground planes. Emphasis is on the oblique-incidence excitation. The approach is based on the known analytical models for strip grids combined with the approximate Babinet principle for planar grids located at a dielectric interface. Analytical expressions for the surface impedance and reflection coefficient resulting from our analysis are thoroughly verified by full-wave simulations and compared with available data in open literature for particular cases. The results can be used in the design of various antennas and microwave or millimeter wave devices which use artificial impedance surfaces and artificial magnetic conductors (reflect-array antennas, tunable phase shifters, etc.), as well as for the derivation of accurate higher-order impedance boundary conditions for artificial (high-) impedance surfaces. As an example, the propagation properties of surface waves along the high-impedance surfaces are studied.
Resumo:
A periodic finite-difference time-domain (FDTD) analysis is presented and applied for the first time in the study of a two-dimensional (2-D) leaky-wave planar antenna based on dipole frequency selective surfaces (FSSs). First, the effect of certain aspects of the FDTD modeling in the modal analysis of complex waves is studied in detail. Then, the FDTD model is used for the dispersion analysis of the antenna of interest. The calculated values of the leaky-wave attenuation constants suggest that, for an antenna of this type and moderate length, a significant amount of power reaches the edges of the antenna, and thus diffraction can play an important role. To test the validity of our dispersion analysis, measured radiation patterns of a fabricated prototype are presented and compared with those predicted by a leaky-wave approach based on the periodic FDTD results.