18 resultados para Learning Problems
Resumo:
Symposium Chair: Dr Jennifer McGaughey
Title: Early Warning Systems: problems, pragmatics and potential
Early Warning Systems (EWS) provide a mechanism for staff to recognise, refer and manage deteriorating patients on general hospital wards. Implementation of EWS in practice has required considerable change in the delivery of critical care across hospitals. Drawing their experience of these changes the authors will demonstrate the problems and potential of using EWS to improve patient outcomes.
The first paper (Dr Jennifer McGaughey: Early Warning Systems: what works?) reviews the research evidence regarding the factors that support or constrain the implementation of Early Warning System (EWS) in practice. These findings explain those processes which impact on the successful achievement of patient outcomes. In order to improve detection and standardise practice National EWS have been implemented in the United Kingdom. The second paper (Catherine Plowright: The implementation of the National EWS in a District General Hospital) focuses on the process of implementing and auditing a National EWS. This process improvement is essential to contribute to future collaborative research and collection of robust datasets to improve patient safety as recommended by the Royal College of Physicians (RCP 2012). To successfully implement NEWS in practice requires strategic planning and staff education. The practical issues of training staff is discussed in the third paper. This paper (Collette Laws-Chapman: Simulation as a modality to embed the use of Early Warning Systems) focuses on using simulation and structured debrief to enhance learning in the early recognition and management of deteriorating patients. This session emphasises the importance of cognitive and social skills developed alongside practical skills in the simulated setting.
Resumo:
The purpose of this paper is to examine the promising contributions of the Concept Maps for Learning (CMfL) website to assessment for learning practices. The CMfL website generates concept maps from relatedness degree of concepts pairs through the Pathfinder Scaling Algorithm. This website also confirms the established principles of effective assessment for learning, for it is capable of automatically assessing students' higher order knowledge, simultaneously identifying strengths and weaknesses, immediately providing useful feedback and being user-friendly. According to the default assessment plan, students first create concept maps on a particular subject and then they are given individualized visual feedback followed by associated instructional material (e.g., videos, website links, examples, problems, etc.) based on a comparison of their concept map and a subject matter expert's map. After studying the feedback and instructional material, teachers can monitor their students' progress by having them create revised concept maps. Therefore, we claim that the CMfL website may reduce the workload of teachers as well as provide immediate and delayed feedback on the weaknesses of students in different forms such as graphical and multimedia. For the following study, we will examine whether these promising contributions to assessment for learning are valid in a variety of subjects.
Resumo:
For a structural engineer, effective communication and interaction with architects cannot be underestimated as a key skill to success throughout their professional career. Structural engineers and architects have to share a common language and understanding of each other in order to achieve the most desirable architectural and structural designs. This interaction and engagement develops during their professional career but needs to be nurtured during their undergraduate studies. The objective of this paper is to present the strategies employed to engage higher order thinking in structural engineering students in order to help them solve complex problem-based learning (PBL) design scenarios presented by architecture students. The strategies employed were applied in the experimental setting of an undergraduate module in structural engineering at Queen’s University Belfast in the UK. The strategies employed were active learning to engage with content knowledge, the use of physical conceptual structural models to reinforce key concepts and finally, reinforcing the need for hand sketching of ideas to promote higher order problem-solving. The strategies employed were evaluated through student survey, student feedback and module facilitator (this author) reflection. The strategies were qualitatively perceived by the tutor and quantitatively evaluated by students in a cross-sectional study to help interaction with the architecture students, aid interdisciplinary learning and help students creatively solve problems (through higher order thinking). The students clearly enjoyed this module and in particular interacting with structural engineering tutors and students from another discipline