167 resultados para Latex allergy


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Langerhans cells (LCs) are prominent dendritic cells (DCs) in epithelia, but their role in immunity is poorly defined. To track and discriminate LCs from dermal DCs in vivo, we developed knockin mice expressing enhanced green fluorescent protein (EGFP) under the control of the langerin (CD207) gene. By using vital imaging, we showed that most EGFP(+) LCs were sessile under steady-state conditions, whereas skin inflammation induced LC motility and emigration to lymph nodes (LNs). After skin immunization, dermal DCs arrived in LNs first and colonized areas distinct from slower migrating LCs. LCs reaching LNs under steady-state or inflammatory conditions expressed similar levels of costimulatory molecules. Langerin and EGFP were also expressed on thymic DCs and on blood-derived, CD8alpha(+) DCs from all secondary lymphoid organs. By using a similar knockin strategy involving a diphtheria toxin receptor (DTR) fused to EGFP, we demonstrated that LCs were dispensable for triggering hapten-specific T cell effectors through skin immunization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Langerhans cells (LCs) are prominent dendritic cells (DCs) in epithelia, but their role in immunity and tolerance is poorly defined. 'Knockin' mice expressing enhanced green fluorescent protein (EGFP) under the control of the langerin (CD207) gene were recently developed in order to discriminate epidermal LCs from other DC subsets and at the same time to track their dynamics under steady-state or inflammatory conditions in vivo. Additional knockin mice expressing a diphtheria toxin receptor fused to EGFP were used to conditionally ablate LCs and assess their role in triggering hapten-specific T cell effectors through skin immunization. We review the insights that have been provided by these various knockin mice and discuss gaps in our knowledge of LCs that need to be filled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteopontin (OPN) is a predominantly secreted extracellular matrix glycophosphoprotein which binds to alpha v-containing integrins and has an important role in malignant cell attachment and invasion. High OPN expression in the primary tumor is associated with early metastasis and poor outcome in human breast and other cancers. Forced OPN overexpression in benign cells may induce neoplastic-like cell behaviour including increased attachment and invasion in vitro as well as the ability to metastasize in vivo. Conversely, OPN inhibition by antisense cDNA impedes cell growth and tumor forming capacity. OPN is not mutationally activated in cancer but its expression is regulated by Wnt/Tcf signaling, steroid receptors, growth factors, ras, Ets and AP-1 transcription factors. Presumably these factors are implicated in induction of OPN overexpression in cancer. Greater understanding of the role of OPN in neoplastic change and its transcriptional regulation may enable development of novel cancer treatment strategies