147 resultados para Laser intensity
Resumo:
A scheme in which carbon ion bunches are accelerated to a high energy and density by a laser pulse (∼10 W/cm) irradiating cone targets is proposed and investigated using particle-in-cell simulations. The laser pulse is focused by the cone and drives forward an ultrathin foil located at the cone's tip. In the course of the work, best results were obtained employing target configurations combining a low-Z cone with a multispecies foil transversely shaped to match the laser intensity profile. © 2014 AIP Publishing LLC.
Resumo:
We present a new regime to generate high-energy quasimonoenergetic proton beams in a "slow-pulse" regime, where the laser group velocity vg<c is reduced by an extended near-critical density plasma. In this regime, for properly matched laser intensity and group velocity, ions initially accelerated by the light sail (LS) mode can be further trapped and reflected by the snowplough potential generated by the laser in the near-critical density plasma. These two acceleration stages are connected by the onset of Rayleigh-Taylor-like (RT) instability. The usual ion energy spectrum broadening by RT instability is controlled and high quality proton beams can be generated. It is shown by multidimensional particle-in-cell simulation that quasimonoenergetic proton beams with energy up to hundreds of MeV can be generated at laser intensities of 1021W/cm2.
Resumo:
A simple method to enhance ion generation with femtosecond ultraintense lasers is demonstrated experimentally by defocusing laser beams on target surface. When the laser is optimally defocused, we find that the population of medium and low energy protons from ultra-thin foils is increased significantly while the proton cutoff energy is almost unchanged. In this way, the total proton yield can be enhanced by more than 1 order, even though the peak laser intensity drops. The depression of the amplified spontaneous emission (ASE) effect and the population increase of moderate-energy electrons are believed to be the main reasons for the effective enhancement. © 2012 American Institute of Physics.
Resumo:
Currently, micro-joining of plastic parts to metal parts in medical devices is achieved by using medical adhesives, For example, pacemakers, defibrillators and neurological stimulators are designed using silicone adhesive to seal the joint between the polyurethane connector module and the titanium can [1]. Nevertheless, the use of adhesive is problematic because it requires a long time to cure and has high tendency to produce leachable products which might be harmful to the human body. An alternative for directly joining plastics to metal without adhesive is therefore required. Laser transmission joining (LTJ) is growing in importance, and has the potential to gain the niche in micro-fabrication of plastics-metal hybrid joints for medical device applications. The possibility of directly joining plastics to metal by LTJ technique have been demonstrated by a number of studies in recent literature [2]. The widely-accepted understanding of LTJ between plastics and metal is that generation and rapid expansion of micro-bubbles at the plastics-metal interface exert high local pressure to press the melted plastics towards the metal surface features during the laser processing [2]. This subsequently creates the plastics-metal hybrid joint by the mechanisms of mechanical interlocking as well as chemical and physical bonds between the plastics and metal surfaces. Although the micro-bubbles can help promote the mechanical interlocking effect to increase the joint strength, the creation of bubble is a random and complex process depending on the complicated interactions between the laser intensity, thermal degradation properties of plastics, surface temperature and topographical features of metal. In an ideal situation, it is desirable to create the hybrid plastics-metal joint without bubbles. However, the mechanical performance of the hybrid plastics-metal joint without bubbles is still unknown, and systematic comparison between the hybrid joints with and without bubbles is lacking in literature. This becomes the objective of this study. In this work, the laser process parameters were carefully chosen from a preliminary study, such that different hybrid joints: with and without bubbles can be produced and compared. Biocompatible PET and commercially pure Ti were selected as materials for laser joining.
Resumo:
Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.
Resumo:
The full-dimensional time-dependent Schrodinger equation for the electronic dynamics of single-electron systems in intense external fields is solved directly using a discrete method. Our approach combines the finite-difference and Lagrange mesh methods. The method is applied to calculate the quasienergies and ionization probabilities of atomic and molecular systems in intense static and dynamic electric fields. The gauge invariance and accuracy of the method is established. Applications to multiphoton ionization of positronium, the hydrogen atom and the hydrogen molecular ion are presented. At very high laser intensity, above the saturation threshold, we extend the method using a scaling technique to estimate the quasienergies of metastable states of the hydrogen molecular ion. The results are in good agreement with recent experiments. (C) 2004 American Institute of Physics.
Resumo:
Single- and multiphoton detachment rates have been calculated for K- using the R-matrix Floquet approach. Single-photon detachment rates, obtained at a laser field peak intensity of 10(9) W cm(-2), are discussed and compared with other theoretical work. Two-photon detachment rates at the same intensity have also been obtained, and similarities with results from earlier calculations for Li- and Na- are discussed. Three-photon rates are also presented at this laser intensity, and are compared and contrasted with those arising in the single-photon case, since both involve resonance structure with P-1(o) symmetry. The influence of resonances such as the 5s(2) S-1(e) doubly excited state and excitations of the residual atom are also considered.
Resumo:
The probability of multiple ionization of krypton by 50 femtosecond circularly polarized laser pulses, independent of the optical focal geometry, has been obtained for the first time. The excellent agreement over the intensity range 100 TW cm-2 to 100 PW cm-2 with the recent predictions of Kornev et al (2003 Phys. Rev. A 68 043414) provides the first experimental confirmation that non-recollisional electronic excitation can occur in strong-field ionization. This is particularly true for higher stages of ionization, when the laser intensity exceeds 10 PW cm-2 as the energetic departure of the ionized electron(s) diabatically distorts the wavefunctions of the bound electrons. By scaling the probability of ionization by the focal volume, we discuss why this mechanism was not apparent in previous studies.
Resumo:
Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, may self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott insulator, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity-field intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the phase is compressible. These states could be realized in existing experimental setups.
Resumo:
The gain coefficient of the strongest 3p --> 3s, J = 2 --> 1 lasing transition at 23.6 nm in the Ne-like Ge collisional excitation scheme has been measured, using the fundamental wavelength from a Nd:glass laser (1.06-mu-m), for a range of incident intensities on massive stripe targets up to 2.2 cm in length. From a threshold incident laser intensity of approximately 6 x 10(12) W/cm2, the gain coefficient rises to approximately 4.5 cm-1 for an irradiation intensity of approximately 2.5 x 10(13) W/cm2, tending towards still higher gain coefficients at higher incident intensities. For targets of maximum length, a gain-length product gL almost-equal-to 10 was reached with a resultant output power at 23.6 nm estimated to be at the approximately kW level. The beam divergence decreased with length to a minimum of approximately 7 mrad but no significant trend in beam pointing with plasma length was observed. From the trend in the gain coefficient, it appears that for a fixed energy laser irradiating a approximately 100-mu-m wide slab targets, an incident intensity of I(i) approximately 1.2 x 10(13) W/cm2 represents an optimum working level, assuming that plasma length is not limited by refractive effects. In addition to the usual valence electron excited 3p --> 3s transitions, the gain coefficient for the core excited 1s(2)2s2p(6)3d --> 1s(2)2s2p(6)3p transition at 19.9 nm has been measured to be approximately 1.5 cm-1 for an incident irradiance of approximately 2.5 x 10(13) W/cm2.
Resumo:
A novel regime is proposed where, by employing linearly polarized laser pulses at intensities 10(21) W cm(-2) (2 orders of magnitude lower than discussed in previous work [T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)]), ions are dominantly accelerated from ultrathin foils by the radiation pressure and have monoenergetic spectra. In this regime, ions accelerated from the hole-boring process quickly catch up with the ions accelerated by target normal sheath acceleration, and they then join in a single bunch, undergoing a hybrid light-sail-target normal sheath acceleration. Under an appropriate coupling condition between foil thickness, laser intensity, and pulse duration, laser radiation pressure can be dominant in this hybrid acceleration. Two-dimensional particle-in-cell simulations show that 1.26 GeV quasimonoenergetic C6+ beams are obtained by linearly polarized laser pulses at intensities of 10(21) W cm(-2).
Resumo:
When a pulse of light reflects from a mirror that is travelling close to the speed of light, Einstein's theory of relativity predicts that it will be up-shifted to a substantially higher frequency and compressed to a much shorter duration. This scenario is realized by the relativistically oscillating plasma surface generated by an ultraintense laser focused onto a solid target. Until now, it has been unclear whether the conditions necessary to exploit such phenomena can survive such an extreme interaction with increasing laser intensity. Here, we provide the first quantitative evidence to suggest that they can. We show that the occurrence of surface smoothing on the scale of the wavelength of the generated harmonics, and plasma denting of the irradiated surface, enables the production of high-quality X-ray beams focused down to the diffraction limit. These results improve the outlook for generating extreme X-ray fields, which could in principle extend to the Schwinger limit.
Resumo:
By extending a prior model [A. R. Bell, J.R. Davies, S. M. Guerin, Phys. Rev. E 58, 2471 (1998)], the magnetic field generated during the transport of a fast electron beam driven by an ultraintense laser in a solid target is derived analytically and applied to estimate the effect of such field on fast electron propagation through a buried high-Z layer in a lower-Z target. It is found that the effect gets weaker with the increase of the depth of the buried layer, the divergence of the fast electrons, and the laser intensity, indicating that magnetic field effects on the fast electron divergence as measured from K-a X-ray emission may need to be considered for moderate laser intensities. On the basis of the calculations, some considerations are made on how one can mitigate the effect of the magnetic field generated at the interface.
Resumo:
The icy surfaces of dust grains in the Interstellar Medium and those of comets, satellites and Kuiper Belt Objects are continuously exposed tophoton and charged particle irradiation. These energetic particles maysputter and induce chemical changes in the ices and the underlyingsurfaces.In the present work 258 nm thick O2 and H2O ices were deposited at 10 K with the thickness measured by a laser interferometer method. Asimple model fit to the reflected laser intensity as measured by aphotodiode detector enabled the refractive index of the ices to bedetermined. The ices were then irradiated with various singly and doublycharged ions such as He+, 13C+, N+, O+ , Ar+, 13C2+, N2+ and O2+ at 4keV. The decrease in ice thickness as a function of ion dose wasmonitored by a laser interferometer and the model used to determine thesputtering yield as shown in Figure 1.In the case of O2 ice thesputtering yields increased with increasing ion mass in good agreementwith a model calculation [Fama, J, Shi, R.A Baragiola, Surface Sci.,602, 156 (2007)]. In the case of O2 ice, O2+ has a significant lowersputtering yield when compared to O+. The sputtering yields for O2 icewere found to be at least 9 times larger compared to those for H2O ice.For H2O ice the sputter yields for C, N and O ions were found todecrease with increasing mass. Doubly charged C, N and O ions which werefound to have the same sputtering yield as the singly charged ionswithin the experimental errors. A preliminary TPD study was carried outusing a QMS to detect the desorbed species from water ice afterirradiation by 6 × 10^15 ions of 13C+ and 13C2+. The formation of13CO and 13CO2 was observed with the yield of 13CO almost of a factor of100 larger than of 13CO2. This is in contrast to our earlier work whereonly CO¬2 was observed.
Resumo:
Simple scaling laws for laser-generated fast electron heating of solids that employ a Spitzer-like resistivity are unlikely to be universally adequate as this model does not produce an adequate description of a material's behaviour at low temperatures. This is demonstrated in this paper by using both numerical simulations and by comparing existing analytical scaling laws for low temperature resistivity. Generally, we find that, in the low temperature regime, the scaling for the heating of the background material has a much stronger dependence on the key empirical parameters (laser intensity, pulse duration, etc.).