23 resultados para LUMINESCENCE QUANTUM YIELD


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we consider the numerical optimization of active surface plasmon polariton (SPP) trench waveguides suited for integration with luminescent polymers for use as highly localized SPP source devices in short-scale communication integrated circuits. The numerical analysis of the SPP modes within trench waveguide systems provides detailed information on the mode field components, effective indices, propagation lengths and mode areas. Such trench waveguide systems offer extremely high confinement with propagation on length scales appropriate to local interconnects, along with high efficiency coupling of dipolar emitters to waveguided plasmonic modes which can be close to 80%. The large Purcell factor exhibited in these structures will further lead to faster modulation capabilities along with an increased quantum yield beneficial for the proposed plasmon-emitting diode, a plasmonic analog of the light-emitting diode. The confinement of studied guided modes is on the order of 50 nm and the delay over the shorter 5 μm length scales will be on the order of 0.1 ps for the slowest propagating modes of the system, and significantly less for the faster modes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The increasingly popular disrupted Langmuir–adsorption (DLA) kinetic model of photocatalysis does not contain an explicit function for the dependence of rate on the irradiance, ρ, but instead has a term αρθ, where, α is a constant of the system, and θ is also a constant equal to 1 or 0.5 at low or high ρ values, respectively. Several groups have recently replaced the latter term with an explicit function of the form χ1(−1 + (1 + χ2ρ)1/2), where χ1 and χ2, are constants that can be related to a proposed reaction scheme. Here the latter schemes are investigated, and revised to create a more credible form by assuming an additional hole trapping step. The latter may be the oxidation of water or a surface saturated with O2–. Importantly, this revision suggests that it is only applicable for low quantum yield/efficiency processes. The revised disrupted Langmuir–adsorption model is used to provide good fits to the kinetic data reported for a number of different systems including the photocatalytic oxidation of nitric oxide (NO), phenol (PhOH), and formic acid (FA).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scaled photoexcitation spectrum of the hydrogen atom in crossed electric and magnetic fields has been obtained by means of accurate quantum mechanical calculation using a new algorithm. Closed orbits in the corresponding classical system have also been obtained, using a new, efficient and practical searching procedure. Two new classes of closed orbit have been identified. Fourier transforming each photoexcitation quantum spectrum to yield a plot against scaled action has allowed direct comparison between peaks in such plots and the scaled action values of closed orbits, Excellent agreement has been found with all peaks assigned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall quantum efficiency in surface plasmon (SP) enhanced Schottky barrier photodetectors is examined by considering both the external and internal yield. The external yield is considered through calculations of absorption and transmission of light in a configuration that allows reflectance minimization due to SP excitation. Following a Monte Carlo method, a procedure is presented to estimate the internal yield while taking into account the effect of elastic and inelastic scattering processes on excited carriers subsequent to photon absorption. The relative importance of internal photoemission and band-to-band contributions to the internal yield is highlighted along with the variation of the yield as a function of wavelength, metal thickness and other salient parameters of the detector. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Details of the novel luminescence of the leuco forms of the thiazine dyes, methylene blue and thionine, are reported, including their emission maxima, quantum yields and lifetimes of the luminescence. Other work shows that this luminescence is independent of reducing agent type and solution pH and is a common feature of most thiazine dyes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present results for a variety of Monte Carlo annealing approaches, both classical and quantum, benchmarked against one another for the textbook optimization exercise of a simple one-dimensional double well. In classical (thermal) annealing, the dependence upon the move chosen in a Metropolis scheme is studied and correlated with the spectrum of the associated Markov transition matrix. In quantum annealing, the path integral Monte Carlo approach is found to yield nontrivial sampling difficulties associated with the tunneling between the two wells. The choice of fictitious quantum kinetic energy is also addressed. We find that a "relativistic" kinetic energy form, leading to a higher probability of long real-space jumps, can be considerably more effective than the standard nonrelativistic one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:


We demonstrate the ability to control the molecular dissociation rate using femtosecond pulses shaped with third-order dispersion (TOD). Explicitly, a significant 50% enhancement in the dissociation yield for the low lying vibrational levels (v ∼ 6) of an H+2 ion-beam target was measured as a function of TOD. The underlying mechanism responsible for this enhanced dissociation was theoretically identified as non-adiabatic alignment induced by the pre-pulses situated on the leading edge of pulses shaped with negative TOD. This control scheme is expected to work in other molecules as it does not rely on specific characteristics of our test-case H+2 molecule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The strong mixing of many-electron basis states in excited atoms and ions with open f shells results in very large numbers of complex, chaotic eigenstates that cannot be computed to any degree of accuracy. Describing the processes which involve such states requires the use of a statistical theory. Electron capture into these “compound resonances” leads to electron-ion recombination rates that are orders of magnitude greater than those of direct, radiative recombination and cannot be described by standard theories of dielectronic recombination. Previous statistical theories considered this as a two-electron capture process which populates a pair of single-particle orbitals, followed by “spreading” of the two-electron states into chaotically mixed eigenstates. This method is similar to a configuration-average approach because it neglects potentially important effects of spectator electrons and conservation of total angular momentum. In this work we develop a statistical theory which considers electron capture into “doorway” states with definite angular momentum obtained by the configuration interaction method. We apply this approach to electron recombination with W20+, considering 2×106 doorway states. Despite strong effects from the spectator electrons, we find that the results of the earlier theories largely hold. Finally, we extract the fluorescence yield (the probability of photoemission and hence recombination) by comparison with experiment.