25 resultados para LGM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global climate changes during the Quaternary reveal much about broader evolutionary effects of environmental change. Detailed regional studies reveal how evolutionary lineages and novel communities and ecosystems, emerge through glacial bottlenecks or from refugia. There have been significant advances in benthic imaging and dating, particularly with respect to the movements of the British (Scottish) and Irish ice sheets and associated changes in sea level during and after the Last Glacial Maximum (LGM). Ireland has been isolated as an island for approximately twice as long as Britain with no evidence of any substantial, enduring land bridge between these islands after ca 15 kya. Recent biogeographical studies show that Britain's mammal community is akin to those of southern parts of Scandinavia, The Netherlands and Belgium, but the much lower mammal species richness of Ireland is unique and needs explanation. Here, we consider physiographic, archaeological, phylogeographical i.e. molecular genetic, and biological evidence comprising ecological, behavioural and morphological data, to review how mammal species recolonized western Europe after the LGM with emphasis on Britain and, in particular, Ireland. We focus on why these close neighbours had such different mammal fauna in the early Holocene, the stability of ecosystems after LGM subject to climate change and later species introductions.

There is general concordance of archaeological and molecular genetic evidence where data allow some insight into history after the LGM. Phylogeography reveals the process of recolonization, e.g. with respect to source of colonizers and anthropogenic influence, whilst archaeological data reveal timing more precisely through carbon dating and stratigraphy. More representative samples and improved calibration of the ‘molecular clock’ will lead to further insights with regards to the influence of successive glaciations. Species showing greatest morphological, behavioural and ecological divergence in Ireland in comparison to Britain and continental Europe, were also those which arrived in Ireland very early in the Holocene either with or without the assistance of people. Cold tolerant mammal species recolonized quickly after LGM but disappeared, potentially as a result of a short period of rapid warming. Other early arrivals were less cold tolerant and succumbed to the colder conditions during the Younger Dryas or shortly after the start of the Holocene (11.5 kya), or the area of suitable habitat was insufficient to sustain a viable population especially in larger species. Late Pleistocene mammals in Ireland were restricted to those able to colonize up to ca 15 kya, probably originating from adjacent areas of unglaciated Britain and land now below sea level, to the south and west (of Ireland). These few, early colonizers retain genetic diversity which dates from before the LGM. Late Pleistocene Ireland, therefore, had a much depleted complement of mammal species in comparison to Britain.

Mammal species, colonising predominantly from southeast and east Europe occupied west Europe only as far as Britain between ca 15 and 8 kya, were excluded from Ireland by the Irish and Celtic Seas. Smaller species in particular failed to colonise Ireland. Britain being isolated as an island from ca. 8 kya has similar species richness and composition to adjacent lowland areas of northwest continental Europe and its mammals almost all show strongest genetic affinity to populations in neighbouring continental Europe with a few retaining genotypes associated with earlier, western lineages.

The role of people in the deliberate introduction of mammal species and distinct genotypes is much more significant with regards to Ireland than Britain reflecting the larger species richness of the latter and its more enduring land link with continental Europe. The prime motivation of early people in moving mammals was likely to be resource driven but also potentially cultural; as elsewhere, people exploring uninhabited places introduced species for food and the materials they required to survive. It is possible that the process of introduction of mammals to Ireland commenced during the Mesolithic and accelerated with Neolithic people. Irish populations of these long established, introduced species show some unique genetic variation whilst retaining traces of their origins principally from Britain but in some cases, Scandinavia and Iberia. It is of particular interest that they may retain genetic forms now absent from their source populations. Further species introductions, during the Bronze and late Iron Ages, and Viking and Norman invasions, follow the same pattern but lack the time for genetic divergence from their source populations. Accidental introductions of commensal species show considerable genetic diversity based on numerous translocations along the eastern Atlantic coastline. More recent accidental and deliberate introductions are characterised by a lack of genetic diversity other than that explicable by more than one introduction.

The substantial advances in understanding the postglacial origins and genetic diversity of British and Irish mammals, the role of early people in species translocations, and determination of species that are more recently introduced, should inform policy decisions with regards to species and genetic conservation. Conservation should prioritise early, naturally recolonizing species and those brought in by early people reflecting their long association with these islands. These early arrivals in Britain and Ireland and associated islands show genetic diversity that may be of value in mitigating anthropogenic climate change across Europe. In contrast, more recent introductions are likely to disturb ecosystems greatly, lead to loss of diversity and should be controlled. This challenge is more severe in Ireland where the number and proportion of invasive species from the 19th century to the present has been greater than in Britain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disjunct distributions of the Lusitanian flora, which are found only in south-west Ireland and northern Iberia, and are generally absent from intervening regions, have been of great interest to biogeographers. There has been much debate as to whether Irish populations represent relicts that survived the Last Glacial Maximum (LGM; approximately 21 kya), or whether they recolonized from southern refugia subsequent to the retreat of the ice and, if so, whether this occurred directly (i.e. the result of long distance dispersal) or successively (i.e. in the manner of a ‘steeplechase’, with the English Channel and Irish Sea representing successive ‘water-jumps’ that have to be successfully crossed). In the present study, we used a combined palaeodistribution modelling and phylogeographical approach to determine the glacial history of the Irish spurge, Euphorbia hyberna, the sole member of the Lusitanian flora that is also considered to occur naturally in south-western England. Our findings suggest that the species persisted through the LGM in several southern refugia, and that northern populations are the result of successive recolonization of Britain and Ireland during the postglacial Littletonian warm stage, akin to the ‘steeplechase’ hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geographic ranges of European plants and animals underwent periods of contraction and re-colonisation during the climatic oscillations of the Pleistocene. The southern Mediterranean peninsulas (Iberian, Italian and Balkan) have been considered the most likely refugia for temperate/warm adapted species. Recent studies however have revealed the existence of extra-Mediterranean refugia, including the existence of cryptic north-west European refugia during the Last Glacial Maxima (24-14.6 kyr BP). In this study we elucidated the phylogeographic history of two sibling bat species, Pipistrellus pipistrellus and P. pygmaeus in their western European range. We sequenced the highly variable mtDNA D-loop for 167 samples of P. pipistrellus (n = 99) and P. pygmaeus (n = 68) and combined our data with published sequences from 331 individuals. Using phylogenetic methodologies we assessed their biogeographic history. Our data support a single eastern European origin for populations of P. pygmaeus s.str., yet multiple splits and origins for populations of P. pipistrellus s.str., including evidence for refugia within refugia and potential cryptic refugia in north western Europe and in the Caucasus. This complex pattern in the distribution of mtDNA haplotypes supports a long history for P. pipistrellus s.str. in Europe, and the hypothesis that species with a broad ecological niche may have adapted and survived outside southern peninsula throughout the LGM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite recent advances in the understanding of the interplay between a dynamic physical environment and phylogeography in Europe, the origins of contemporary Irish biota remain uncertain. Current thinking is that Ireland was colonized post-glacially from southern European refugia, following the end of the last glacial maximum(LGM), some 20 000 years BP. The Leisler’s bat (Nyctalus leisleri), one of the few native Irish mammal species, is widely distributed throughout Europe but, with the exception of Ireland, is generally rare and considered vulnerable. We investigate the origins and phylogeographic relationships of Irish populations in relation to those across Europe, including the closely related species N. azoreum. We use a combination of approaches, including mitochondrial and nuclear DNA markers, in addition to approximate Bayesian computation and palaeo-climatic species distribution modelling. Molecular analyses revealed two distinct and diverse European mitochondrialDNAlineages,which probably diverged in separate glacial refugia. Awestern lineage, restricted to Ireland, Britain and the Azores, comprises Irish and British N. leisleri and N. azoreum specimens; an eastern lineage is distributed throughout mainland Europe. Palaeo-climatic projections indicate suitable habitats during the LGM, including known glacial refugia, in addition to potential novel cryptic refugia along the western fringe of Europe. These results may be applicable to populations of many species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fragments of chelonian carapace and plastral dermal plates are well-represented from archaeological sites in the world's dry and wet tropics. However, although these bones are easily identified at an element level, few archaeological reports have explored the potential of using features of form and surface sculpturing as a way to refine that identification to genus or species. The ability to achieve such a refinement would benefit environmental and human subsistence strategy models alike. The objective of the current paper was to isolate recurrent and readily visible surface characteristics on the dermal plates from a selection of commonly occurring Southeast Asian hard- and soft-shelled turtles. Using these criteria, analysis is made of the chelonian assemblage from pre- and post-Last Glacial Maximum (LGM) cultural deposits in the West Mouth of Niah Cave. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio-economically, relatively little is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; ca. 21 KYA) indicated large areas of suitable habitat south of the species’ current-day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long-term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Greenland ice core data show that the last glaciation in the Northern Hemisphere was characterized by relatively short and rapid warming-cooling cycles. While the Last Glacial Maximum (LGM) and the following Late Glacial are well documented in the Eastern Alps, continuous and well dated records of the time period preceding the LGM are only known from stalagmites. Although most of the sediment that filled the Alpine valleys prior to the LGM was eroded, thick successions have been locally preserved as terraces along the flanks of large longitudinal valleys. The Inn valley in Tyrol (Austria) offers the most striking examples of Pleistocene terraces in the Eastern Alps. A large number of drill cores provides the opportunity to study these sediments for the first time in great detail. Our study focuses on the river terrace of Unterangerberg near Wörgl, where LGM gravel and till were deposited on top of (glacio)lacustrine sediments. The cores comprise mostly silty material, ranging from organic-rich to organic-poor and dropstone-rich beds. A diamictic layer classified as basal till is present at the bottom of the lake sediments. Radiocarbon ages of plant macro remains from the lake sequences indicate deposition between ~40 and >50 cal. ka BP. Luminescence ages obtained from fine-grain polymineral (4-11 μm) samples suggest an age of the lake deposits between ~40 to 60 ka and are consistent with the radiocarbon dates. Sedimentological analyses indicate that sedimentation in these palaeolakes was driven by local processes, but also by climatically induced changes in nearby glacier activity. These observations strongly hint towards a significant ice advance in the Eastern Alps during the early last glacial and subsequent mild interstadial conditions, supporting a local coniferous forest vegetation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hosted in a wide depression within the Berici Hills (Venetian Plain), outside the maximum extent reached by LGM glaciers, Lake Fimon preserves an almost continuous archive of landscape and climate changes from the penultimate glacial maximum onwards. The stratigraphic succession deposited at the lake bottom has been investigated in three deep cores by means of pollen analysis, petrographic composition, magnetic susceptibility, LOI, and geochronology. Tephra layers have been identified and are currently under study.
Pollen data provide the first continuous vegetation record in northern Italy for the last 150 ky. Terrestrial vegetation varied from interglacial warm-temperate broad leaved to oceanic mixed forests, from boreal conifer forests to open forest-steppes of colder climate. Phases of major forest expansion and reduction have been correlated to isotopic events described in ice (NGRIP), stalagmite (Antro del Corchia) and marine records. Persistent afforestation recorded in northern Italy even during cold phases of the full pleniglacial is consistent with mesoscale paleoclimate simulations suggesting that a sharp rainfall gradient across the Alps enabled the survival of woody species in the southern alpine foreland.
Integrating litho- and biostratigraphical data, we identified sedimentation regìmes, accumulation rates, sediment sources and supply both for the Lake Fimon cores and the adjacent Venetian Plain, allowing a direct comparison with major glacial advances in the Alpine area, deglaciation pulses, and glacio-eustatic displacements of the northern Adriatic shoreline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent analyses of sediment samples from "black mat" sites in South America and Europe support previous interpretations of an ET impact event that reversed the Late Glacial demise of LGM ice during the Bølling Allerød warming, resulting in a resurgence of ice termed the Younger Dryas (YD) cooling episode. The breakup or impact of a cosmic vehicle at the YD boundary coincides with the onset of a 1-kyr long interval of glacial resurgence, one of the most studied events of the Late Pleistocene. New analytical databases reveal a corpus of data indicating that the cosmic impact was a real event, most possibly a cosmic airburst from Earth's encounter with the Taurid Complex comet or unknown asteroid, an event that led to cosmic fragments exploding interhemispherically over widely dispersed areas, including the northern Andes of Venezuela and the Alps on the Italian/French frontier. While the databases in the two areas differ somewhat, the overall interpretation is that microtextural evidence in weathering rinds and in sands of associated paleosols and glaciofluvial deposits carry undeniable attributes of melted glassy carbon and Fe spherules, planar deformation features, shock-melted and contorted quartz, occasional transition and platinum metals, and brecciated and impacted minerals of diverse lithologies. In concert with other black mat localities in the Western USA, the Netherlands, coastal France, Syria, Central Asia, Peru, Argentina and Mexico, it appears that a widespread cosmic impact by an asteroid or comet is responsible for deposition of the black mat at the onset of the YD glacial event. Whether or not the impact caused a 1-kyr interval of glacial climate depends upon whether or not the Earth had multiple centuries-long episodic encounters with the Taurid Complex or asteroid remnants; impact-related changes in microclimates sustained climatic forcing sufficient to maintain positive mass balances in the reformed ice; and/or inertia in the Atlantic thermohaline circulation system persisted for 1kyr.