37 resultados para Kreuzungsexperimente, Baculoviren, Yeast Two-Hybrid System, Resistenzmanagement, geschlechtsgebundene Vererbung
Resumo:
Galactose is metabolised to the more metabolically useful glucose 6-phosphate by the enzymes of the Leloir pathway. This pathway is necessary as the initial enzymes of glycolysis are unable to recognise galactose. In most organisms, including Saccharomyces cerevisiae, five enzymes are required to catalyse the conversion: galactose mutarotase, galactokinase, galactose 1-phosphate uridyltransferase, UDP-galactose 4-epimerase and phosphoglucomutase. The pathway has attracted interest in S. cerevisiae as it is under very strict genetic control and thus provides an excellent model for the study of gene expression in eukaryotes. In the presence of glucose the genes encoding the Leloir pathway enzymes (the GAL genes) are completely repressed through the action of a transcription factor Mig1p. Only in the presence of galactose and the absence of glucose do the concerted actions of Gal4p, Gal80p and Gal3p enable the rapid and high level activation of the GAL genes. The exact mechanism of action of these three proteins is controversial. Galactose metabolism in S. cerevisiae is also of interest because it can be exploited both in the laboratory (for high level expression of heterologous proteins and in the yeast two hybrid screen) and industrially (increasing flux through the Leloir pathway in order to make more efficient use of feedstocks with high galactose content). Recent work on the structures of the various proteins, their mechanisms of action and attempts to gain an integrated understanding of transcriptional and metabolic events will assist our understanding of both the fundamental biochemical processes and how these might be exploited commercially.
Resumo:
LYRIC/AEG-1 and its altered expression have been linked to carcinogenesis in prostate, brain and melanoma as well as promoting chemoresistance and metastasis in breast cancer. LYRIC/AEG-1 function remains unclear, although LYRIC/AEG-1 is activated by oncogenic HA-RAS, through binding of c-myc to its promoter, which in turn regulates the key components of the PI3-kinase and nuclear factor-kappaB pathways. We have identified the transcriptional repressor PLZF as an interacting protein of LYRIC/AEG through a yeast two-hybrid screen. PLZF regulates the expression of genes involved in cell growth and apoptosis including c-myc. Coexpression of LYRIC/AEG-1 with PLZF leads to a reduction in PLZF-mediated repression by reducing PLZF binding to promoters. We have confirmed that nuclear LYRIC/AEG-1 and PLZF interact in mammalian cells via the N- and C termini of LYRIC/AEG-1 and a region C terminal to the RD2 domain of PLZF. Both proteins colocalize to nuclear bodies containing histone deacetylases, which are known to promote PLZF-mediated repression. Our data suggest one mechanism for cells with altered LYRIC/AEG-1 expression to evade apoptosis and increase cell growth during tumourigenesis through the regulation of PLZF repression.
Resumo:
Plasma membrane calmodulin-dependent calcium ATPases (PMCAs) are enzymatic systems implicated in the extrusion of calcium from the cell. We and others have previously identified molecular interactions between the cytoplasmic COOH-terminal end of PMCA and PDZ domain-containing proteins. These interactions suggested a new role for PMCA as a modulator of signal transduction pathways. The existence of other intracellular regions in the PMCA molecule prompted us to investigate the possible participation of other domains in interactions with different partner proteins. A two-hybrid screen of a human fetal heart cDNA library, using the region 652-840 of human PMCA4b (located in the catalytic, second intracellular loop) as bait, revealed a novel interaction between PMCA4b and the tumor suppressor RASSF1, a Ras effector protein involved in H-Ras-mediated apoptosis. Immunofluorescence co-localization, immunoprecipitation, and glutathione S-transferase pull-down experiments performed in mammalian cells provided further confirmation of the physical interaction between the two proteins. The interaction domain has been narrowed down to region 74-123 of RASSF1C (144-193 in RASSF1A) and 652-748 of human PMCA4b. The functionality of this interaction was demonstrated by the inhibition of the epidermal growth factor-dependent activation of the Erk pathway when PMCA4b and RASSF1 were co-expressed. This inhibition was abolished by blocking PMCA/RASSSF1 association with an excess of a green fluorescent protein fusion protein containing the region 50-123 of RASSF1C. This work describes a novel protein-protein interaction involving a domain of PMCA other than the COOH terminus. It suggests a function for PMCA4b as an organizer of macromolecular protein complexes, where PMCA4b could recruit diverse proteins through interaction with different domains. Furthermore, the functional association with RASSF1 indicates a role for PMCA4b in the modulation of Ras-mediated signaling.
Resumo:
A system for the identification of power quality violations is proposed. It is a two-stage system that employs the potentials of the wavelet transform and the adaptive neurofuzzy networks. For the first stage, the wavelet multiresolution signal analysis is exploited to denoise and then decompose the monitored signals of the power quality events to extract its detailed information. A new optimal feature-vector is suggested and adopted in learning the neurofuzzy classifier. Thus, the amount of needed training data is extensively reduced. A modified organisation map of the neurofuzzy classifier has significantly improved the diagnosis efficiency. Simulation results confirm the aptness and the capability of the proposed system in power quality violations detection and automatic diagnosis
Resumo:
We illustrate a reverse Von Neumann measurement scheme in which a geometric phase induced on a quantum harmonic oscillator is measured using a microscopic qubit as a probe. We show how such a phase, generated by a cyclic evolution in the phase space of the harmonic oscillator, can be kicked back on the qubit, which plays the role of a quantum interferometer. We also extend our study to finite-temperature dissipative Markovian dynamics and discuss potential implementations in micro-and nanomechanical devices coupled to an effective two-level system.
Resumo:
This paper provides an integrated overview of the factors which control gelation in a family of dendritic gelators based on lysine building blocks. In particular, we establish that higher generation systems are more effective gelators, amide linkages in the dendron are better than carbamates, and long alkyl chain surface groups and a carboxylic acid at the focal point enhance gelation. The gels are best formed in relatively low polarity solvents with no hydrogen bond donor ability and limited hydrogen bond acceptor capacity. The dendrons with acid groups at the focal point can form two component gels with diaminododecane, and in this case, it is the lower generation dendrons which can avoid steric hindrance and form more effective gels. The stereochemistry of lysine is crucial in self-assembly, with opposite enantiomers disrupting each other's molecular recognition pathways. For the two-component system, stoichiometry is key, if too much diamine is present, dendron-stabilised microcrystals of the diamine begin to form. Interestingly, gelation still occurs in this case, and the systems with amides/alkyl chains are more effective gels, as a consequence of enhanced dendron-dendron intermolecular interactions allowing the microcrystals to form an interconnected network.
Resumo:
This paper presents a new method for online determination of the Thèvenin equivalent parameters of a power system at a given node using the local PMU measurements at that node. The method takes into account the measurement errors and the changes in the system side. An analysis of the effects of changes in system side is carried out on a simple two-bus system to gain an insight of the effect of system side changes on the estimated Thévenin equivalent parameters. The proposed method uses voltage and current magnitudes as well as active and reactive powers; thus avoiding the effect of phase angle drift of the PMU and the need to synchronize measurements at different instances to the same reference. Applying the method to the IEEE 30-bus test system has shown its ability to correctly determine the Thévenin equivalent even in the presence of measurement errors and/or system side changes.
Resumo:
A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode system is embedded in a thermal environment, however, each mode may not be entangled with its environment by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total system, which is composed of an entangled two-mode system and a thermal environment. The Markovian interaction with the environment is concerned with an array of infinite number of beam splitters. It is shown that many-body entanglement of the system and the environment may play a crucial role in the process of disentangling the system.
Resumo:
Intense, few-femtosecond pulse technology has enabled studies of the fastest vibrational relaxation processes. The hydrogen group vibrations can be imaged and manipulated using intense infrared pulses. Through numerical simulation, we demonstrate an example of ultrafast coherent control that could be effected with current experimental facilities, and observed using high-resolution time-of-flight spectroscopy. The proposal is a pump-probe-type technique to manipulate the D2+ ion with ultrashort pulse sequences. The simulations presented show that vibrational selection can be achieved through pulse delay. We find that the vibrational system can be purified to a two-level system thus realizing a vibrational qubit. A novel scheme for the selective transfer of population between these two levels, based on a Raman process and conditioned upon the delay time of a second control-pulse is outlined, and may enable quantum encoding with this system.
Resumo:
Organic solvents are widely used in a range of multiphase bioprocess operations including the liquid-liquid extraction of antibiotics and two-phase biotransformation reactions. There are, however, considerable problems associated with the safe handling of these solvents which relate to their toxic and flammable nature. In this work we have shown for the first time that room-temperature ionic liquids, such as 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], can be successfully used in place of conventional solvents for the liquid-liquid extraction of erythromycin-A and for the Rhodococcus R312 catalyzed biotransformation of 1,3-dicyanobenzene (1,3-DCB) in a liquid-liquid, two-phase system. Extraction of erythromycin with either butyl acetate or [bmim][PF6] showed that values of the equilibrium partition coefficient, K, up to 20-25 could be obtained for both extractants. The variation of K with the extraction pH was also similar in the pH range 5-9 though differed significantly at higher pH values. Biotransformation of 1,3-DCB in both water-toluene and water-[bmim][PF6] systems showed similar profiles for the conversion of 1,3-DCB initially to 3-cyanobenzamide and then 3-cyanobenzoic acid. The initial rate of 3-cyanobenzamide production in the water-[bmim][PF6] system was somewhat lower, however, due to the reduced rate of 1,3-DCB mass transfer from the more viscous [bmim] [PF,] phase. it was also shown that the specific activity of the biocatalyst in the water-[bmim][PF6] system was almost an order of magnitude greater than in the water-toluene system which suggests that the rate of 3-cyanobenzamide production was limited by substrate mass transfer rather than the activity of the biocatalyst. (C) 2000 John Wiley & Sons, Inc.
Resumo:
We introduce a protocol for steady-state entanglement generation and protection based on detuning modulation in the dissipative interaction between a two-qubit system and a bosonic mode. The protocol is a global-addressing scheme which only requires control over the system as a whole. We describe a postselection procedure to project the register state onto a subspace of maximally entangled states. We also outline how our proposal can be implemented in a circuit-quantum electrodynamics setup.
Resumo:
A graphical method is presented for determining the capability of individual system nodes to accommodate wind power generation. The method is based upon constructing a capability chart for each node at which a wind farm is to be connected. The capability chart defines the domain of allowable power injections at the candidate node, subject to constraints imposed by voltage limits, voltage stability and equipment capability limits being satisfied. The chart is first derived for a two-bus model, before being extended to a multi-node power system. The graphical method is employed to derive the chart for a two-node system, as well as its application to a multi-node power system, considering the IEEE 30-bus test system as a case study. Although the proposed method is derived with the intention of determining the wind farm capacity to be connected at a specific node, it can be used for the analysis of a PQ bus loading as well as generation.
Resumo:
Despite the simultaneous progress of traffic modelling both on the macroscopic and microscopic front, recent works [E. Bourrel, J.B. Lessort, Mixing micro and macro representation of traffic flow: a hybrid model based on the LWR theory, Transport. Res. Rec. 1852 (2003) 193–200; D. Helbing, M. Treiber, Critical discussion of “synchronized flow”, Coop. Transport. Dyn. 1 (2002) 2.1–2.24; A. Hennecke, M. Treiber, D. Helbing, Macroscopic simulations of open systems and micro–macro link, in: D. Helbing, H.J. Herrmann, M. Schreckenberg, D.E. Wolf (Eds.), Traffic and Granular Flow ’99, Springer, Berlin, 2000, pp. 383–388] highlighted that one of the most promising way to simulate efficiently traffic flow on large road networks is a clever combination of both traffic representations: the hybrid modelling. Our focus in this paper is to propose two hybrid models for which the macroscopic (resp. mesoscopic) part is based on a class of second order model [A. Aw, M. Rascle, Resurection of second order models of traffic flow?, SIAM J. Appl. Math. 60 (2000) 916–938] whereas the microscopic part is a Follow-the Leader type model [D.C. Gazis, R. Herman, R.W. Rothery, Nonlinear follow-the-leader models of traffic flow, Oper. Res. 9 (1961) 545–567; R. Herman, I. Prigogine, Kinetic Theory of Vehicular Traffic, American Elsevier, New York, 1971]. For the first hybrid model, we define precisely the translation of boundary conditions at interfaces and for the second one we explain the synchronization processes. Furthermore, through some numerical simulations we show that the waves propagation is not disturbed and the mass is accurately conserved when passing from one traffic representation to another.
Resumo:
The evolution of a two level system with a slowly varying Hamiltonian, modeled as a spin 1/2 in a slowly varying magnetic field, and interacting with a quantum environment, modeled as a bath of harmonic oscillators is analyzed using a quantum Langevin approach. This allows to easily obtain the dissipation time and the correction to the Berry phase in the case of an adiabatic cyclic evolution.
Resumo:
We study the interplay between forgetful and memory-keeping evolution enforced on a two-level system by a multi-spin environment whose elements are coupled to local bosonic baths. Contrarily to the expectation that any non-Markovian effect would be buried by the forgetful mechanism induced by the spin-bath coupling, one can actually induce a full Markovian-to-non-Markovian transition of the two-level system's dynamics, controllable by parameters such as the mismatch between the energy of the two-level system and of the spin environment. For a symmetric coupling, the amount of non-Markovianity surprisingly grows with the number of decoherence channels. DOI: 10.1103/PhysRevA.87.022317