41 resultados para KNEE PROSTHESIS
Resumo:
This paper describes an example of spontaneous transitions between qualitatively different coordination patterns during a cyclic lifting and lowering task. Eleven participants performed 12 trials of repetitive lifting and lowering in a ramp protocol in which the height of the lower shelf was raised or lowered I cm per cycle between 10 and 50 cm. Two distinct patterns of coordination were evident: a squat technique in which moderate range of hip, knee and ankle movement was utilised and ankle plantar-flexion occurred simultaneously with knee and hip extension; and a stoop technique in which the range of knee movement was reduced and knee and hip extension was accompanied by simultaneous ankle dorsi-flexion. Abrupt transitions from stoop to squat techniques were observed during descending trials, and from squat to stoop during ascending trials. Indications of hysteresis was observed in that transitions were more frequently observed during descending trials, and the average shelf height at the transition was 5 cm higher during ascending trials. The transitions may be a consequence of a trade-off between the biomechanical advantages of each technique and the influence of the lift height on this trade-off. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We recently described a sonication technique for the diagnosis of prosthetic knee and hip infections. We compared periprosthetic tissue culture to implant sonication followed by sonicate fluid culture for the diagnosis of prosthetic shoulder infection. One hundred thirty-six patients undergoing arthroplasty revision or resection were studied; 33 had definite prosthetic shoulder infections and 2 had probable prosthetic shoulder infections. Sonicate fluid culture was more sensitive than periprosthetic tissue culture for the detection of definite prosthetic shoulder infection (66.7 and 54.5%, respectively; P = 0.046). The specificities were similar (98.0% and 95.1%, respectively; P = 0.26). Propionibacterium acnes was the commonest species detected among culture-positive definite prosthetic shoulder infection cases by periprosthetic tissue culture (38.9%) and sonicate fluid culture (40.9%). All subjects from whom P. acnes was isolated from sonicate fluid were male. We conclude that sonicate fluid culture is useful for the diagnosis of prosthetic shoulder infection.
Resumo:
Mitochondrial free radical formation has been implicated as a potential mechanism underlying degenerative senescence, although human data are lacking. Therefore, the present study was designed to examine if resting and exercise-induced intramuscular free radical-mediated lipid peroxidation is indeed increased across the spectrum of sedentary aging. Biopsies were obtained from the vastus lateralis in six young (26 ± 6 yr) and six aged (71 ± 6 yr) sedentary males at rest and after maximal knee extensor exercise. Aged tissue exhibited greater (P < 0.05 vs. the young group) electron paramagnetic resonance signal intensity of the mitochondrial ubisemiquinone radical both at rest (+138 ± 62%) and during exercise (+143 ± 40%), and this was further complemented by a greater increase in a-phenyl-tert-butylnitrone adducts identified as a combination of lipid-derived alkoxyl-alkyl radicals (+295 ± 96% and +298 ± 120%). Lipid hydroperoxides were also elevated at rest (0.190 ± 0.169 vs. 0.148 ± 0.071 nmol/mg total protein) and during exercise (0.567 ± 0.259 vs. 0.320 ± 0.263 nmol/mg total protein) despite a more marked depletion of ascorbate and uptake of a/ß-carotene, retinol, and lycopene (P < 0.05 vs. the young group). The impact of senescence was especially apparent when oxidative stress biomarkers were expressed relative to the age-related decline in mitochondrial volume density and absolute power output at maximal exercise. In conclusion, these findings confirm that intramuscular free radical-mediated lipid peroxidation is elevated at rest and during acute exercise in aged humans.
Resumo:
Multiple osteochondromas is an inherited autosomal dominant condition of enchondral bone growth. The paper undertakes the first synthesis study of the 16 known cases of the condition that have been identified in the international palaeopathological record. It also includes information derived from two newly discovered cases of the disease in two adult male individuals recovered from the Medieval cemetery at Ballyhanna, Co. Donegal, Ireland. The formation of multiple osteochondromas is the best known characteristic of the disease but it also involves the development of a suite of orthopaedic deformities. These deformities, which include disproportionate short stature, inequality of bone length, forearm deformities, tibiofibular diastasis, coxa valga of the hip and valgus deformity of the knee and ankle, are discussed in relation to the archaeological cases. Numerous synonyms for the disease have been used within the various publications produced by palaeopathologists, and this can generate confusion among readers. As such, the paper recommends that in future palaeopathologists should follow the guidance of the World Health Organization and use the term multiple osteochondromas when discussing the disease.
Resumo:
Introduction The number of revision hip arthroplasties is increasing but several aspects of this procedure could be improved. One method of reducing intra-operative complications is the cement-in-cement technique. This procedure entails cementing a smaller femoral prosthesis into the existing stable cement mantle. The aim of this systematic review is to provide a concise overview of the existing historical, operative, biomechanical and clinical literature on the cement-in-cement construct.
Resumo:
Advances in surgical procedure, prosthesis design, and biomaterials performance have considerably increased the longevity of total joint replacements. Preoperative planning is another step in joint replacement that may have the potential to improve clinical outcome for the individual patient, but has remained relatively consistent for a longtime. One means of advancing this aspect of joint replacement surgery may be to include predictive computer simulation into the planning process. In this article, the potential of patient-specific finite element analysis in preoperative assessment is investigated. Seventeen patient-specific finite element models of cemented Charnley reconstructions were created, of which six were early (
Resumo:
Stress analysis of the cement fixation of orthopaedic implants to bone is frequently? carried out using finite element analysis. However, the stress distribution in the cement laver is usually intricate, and it is difficult to report it in a way that facilitates comparison of implants for pre-clinical testing. To study this problem, and make recommendations for stress reporting, a finite element analysis of a hip prosthesis implanted into a synthetic composite femur is developed. Three cases are analyzed: a fully bonded implant, a debonded implant, and a debonded implant where the cement is removed distal to the stein tip. In addition to peak stresses, and contour and vector plots, a stressed volume and probability-of-failure analysis is reported. It is predicted that the peak stress is highest for the debonded stem, and that removal of the distal cement more than halves this peak stress. This would suggest that omission of the distal cement is good for polished prostheses (as practiced for the Exeter design). However; if the percentage of cement stressed above a certain threshold (say 3 MPa) is considered, then the removal of distal cement is shown to be disadvantageous because a higher volume of cement is stressed to above the threshold. Vector plots clearly demonstrate the different load transfer for bonded and debonded prostheses: A bonded stein generates maximum tensile stresses in the longitudinal direction, whereas a debonded stem generates most tensile stresses in the hoop direction, except near the tip where tensile longitudinal stresses occur due to subsidence of the stein. Removal of the cement distal to the tip allows greater subsidence but alleviates these large stresses at the tip, albeit at the expense of increased hoop stresses throughout the mantle. It is concluded that a thorough analysis of cemented implants should not report peak stress, which can be misleading, but rather stressed volume, and that vector plots should be reported if a precise analysis of the load transfer mechanism is required.
Resumo:
OBJECTIVE: Despite recent increases in the volume of research in professional rugby union, there is little consensus on the epidemiology of injury in adolescent players. We undertook a systematic review to determine the incidence, severity, and nature of injury in adolescent rugby union players.
DATA SOURCES: In April 2009, we performed a computerized literature search on PubMed, Embase, and Cochrane Controlled Trials Register (via Ovid). Population-specific and patient-specific search terms were combined in the form of MEDLINE subject headings and key words (wound$ and injur$, rugby, adolescent$). These were supplemented with related-citation searches on PubMed and bibliographic tracking of primary and review articles.
STUDY SELECTION: Prospective epidemiologic studies in adolescent rugby union players.
DATA SYNTHESIS: A total of 15 studies were included, and the data were analyzed descriptively. Two independent reviewers extracted key study characteristics regarding the incidence, severity, and nature of injuries and the methodologic design.
CONCLUSIONS: Wide variations existed in the injury definitions and data collection procedures. The incidence of injury necessitating medical attention varied with the definition, from 27.5 to 129.8 injuries per 1000 match hours. The incidence of time-loss injury (>7 days) ranged from 0.96 to 1.6 per 1000 playing hours and from 11.4/1000 match hours (>1 day) to 12-22/1000 match hours (missed games). The highest incidence of concussion was 3.3/1000 playing hours. No catastrophic injuries were reported. The head and neck, upper limb, and lower limb were all common sites of injury, and trends were noted toward greater time loss due to upper limb fractures or dislocations and knee ligament injuries. Increasing age, the early part of the playing season, and the tackle situation were most closely associated with injury. Future injury-surveillance studies in rugby union must follow consensus guidelines to facilitate interstudy comparisons and provide further clarification as to where injury-prevention strategies should be focused.
Resumo:
Computing has recently reached an inflection point with the introduction of multicore processors. On-chip thread-level parallelism is doubling approximately every other year. Concurrency lends itself naturally to allowing a program to trade performance for power savings by regulating the number of active cores; however, in several domains, users are unwilling to sacrifice performance to save power. We present a prediction model for identifying energy-efficient operating points of concurrency in well-tuned multithreaded scientific applications and a runtime system that uses live program analysis to optimize applications dynamically. We describe a dynamic phase-aware performance prediction model that combines multivariate regression techniques with runtime analysis of data collected from hardware event counters to locate optimal operating points of concurrency. Using our model, we develop a prediction-driven phase-aware runtime optimization scheme that throttles concurrency so that power consumption can be reduced and performance can be set at the knee of the scalability curve of each program phase. The use of prediction reduces the overhead of searching the optimization space while achieving near-optimal performance and power savings. A thorough evaluation of our approach shows a reduction in power consumption of 10.8 percent, simultaneous with an improvement in performance of 17.9 percent, resulting in energy savings of 26.7 percent.
Resumo:
Reliable prediction of long-term medical device performance using computer simulation requires consideration of variability in surgical procedure, as well as patient-specific factors. However, even deterministic simulation of long-term failure processes for such devices is time and resource consuming so that including variability can lead to excessive time to achieve useful predictions. This study investigates the use of an accelerated probabilistic framework for predicting the likely performance envelope of a device and applies it to femoral prosthesis loosening in cemented hip arthroplasty.
A creep and fatigue damage failure model for bone cement, in conjunction with an interfacial fatigue model for the implant–cement interface, was used to simulate loosening of a prosthesis within a cement mantle. A deterministic set of trial simulations was used to account for variability of a set of surgical and patient factors, and a response surface method was used to perform and accelerate a Monte Carlo simulation to achieve an estimate of the likely range of prosthesis loosening. The proposed framework was used to conceptually investigate the influence of prosthesis selection and surgical placement on prosthesis migration.
Results demonstrate that the response surface method is capable of dramatically reducing the time to achieve convergence in mean and variance of predicted response variables. A critical requirement for realistic predictions is the size and quality of the initial training dataset used to generate the response surface and further work is required to determine the recommendations for a minimum number of initial trials. Results of this conceptual application predicted that loosening was sensitive to the implant size and femoral width. Furthermore, different rankings of implant performance were predicted when only individual simulations (e.g. an average condition) were used to rank implants, compared with when stochastic simulations were used. In conclusion, the proposed framework provides a viable approach to predicting realistic ranges of loosening behaviour for orthopaedic implants in reduced timeframes compared with conventional Monte Carlo simulations.
Resumo:
This article examines the work and roles of HR managers in the Irish recession. It tests the validity of three competing views about the future of HR: that the profession needs to become a business partner; that it is knee-deep in a legitimacy crisis; and that it is fragmenting by being unable to cope with the complexity of modern organizational life. Three key findings emerge from the research. First, HR managers have gained greater influence in business decision-making, but much of this influence arises from short-run retrenchment measures. Second, many HR managers remain committed to long established professional values and ideas of good practice. Third, modern HR managers are developing a professional identity that allows them to perform multiple, competing roles. These findings challenge existing arguments about the effects of the current recession. They also speak to ongoing debates about changing HR roles by showing how HR managers remain adept at making pragmatic adaptations to secure their role in organizational life. © The Author(s) 2012.
Resumo:
Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes.A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.
Resumo:
PURPOSE: To report a new technique to correct tube position in anterior chamber after glaucoma drainage device implantation.
PATIENT AND METHODS: A patient who underwent a glaucoma drainage device implantation was noted to have the tube touching the corneal endothelium. A 10/0 polypropylene suture with double-armed 3-inch long straight needle was placed transcamerally from limbus to limbus, in the superior part of the eye, passing the needle in front of the tube.
RESULTS: The position of the tube in the anterior chamber was corrected with optimal distance from corneal endothelium and iris surface. The position remained satisfactory after 20 months of follow-up.
CONCLUSIONS: The placement of a transcameral suture offers a safe, quick, and minimal invasive intervention for the correction of the position of a glaucoma drainage device tube in the anterior chamber.
Resumo:
We demonstrate that cosmic rays form filamentary structures in the precursors of supernova remnant shocks due to their self-generated magnetic fields. The cosmic ray filamentation results in the growth of a long-wavelength instability, and naturally couples the rapid non-linear amplification on small scales to larger length-scales. Hybrid magnetohydrodynamics-particle simulations are performed to confirm the effect. The resulting large-scale magnetic field may facilitate the scattering of high-energy cosmic rays as required to accelerate protons beyond the knee in the cosmic ray spectrum at supernova remnant shocks. Filamentation far upstream of the shock may also assist in the escape of cosmic rays from the accelerator.
Resumo:
The role of hydrogen sulfide (H2 S) in inflammation remains unclear with both pro- and anti-inflammatory actions of this gas described. We have now assessed the effect of GYY4137 (a slow-releasing H2 S donor) on lipopolysaccharide (LPS)-evoked release of inflammatory mediators from human synoviocytes (HFLS) and articular chondrocytes (HAC) in vitro. We have also examined the effect of GYY4137 in a complete Freund's adjuvant (CFA) model of acute joint inflammation in the mouse. GYY4137 (0.1-0.5 mM) decreased LPS-induced production of nitrite (NO2 (-) ), PGE2 , TNF-a and IL-6 from HFLS and HAC, reduced the levels and catalytic activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced LPS-induced NF-?B activation in vitro. Using recombinant human enzymes, GYY4137 inhibited the activity of COX-2, iNOS and TNF-a converting enzyme (TACE). In the CFA-treated mouse, GYY4137 (50 mg/kg, i.p.) injected 1 hr prior to CFA increased knee joint swelling while an anti-inflammatory effect, as demonstrated by reduced synovial fluid myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG) activity and decreased TNF-a, IL-1ß, IL-6 and IL-8 concentration, was apparent when GYY4137 was injected 6 hrs after CFA. GYY4137 was also anti-inflammatory when given 18 hrs after CFA. Thus, although GYY4137 consistently reduced the generation of pro-inflammatory mediators from human joint cells in vitro, its effect on acute joint inflammation in vivo depended on the timing of administration.