36 resultados para KINASE DOMAIN MUTATIONS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Idiopathic erythrocytosis (IE) is characterized by erythrocytosis in the absence of megakaryocytic or granulocytic hyperplasia, and is associated with variable serum erythropoietin (Epo) levels. Most patients with IE lack the JAK2 V617F mutation that occurs in the majority of polycythemia vera patients. Four novel JAK2 mutant alleles have recently been described in patients with V617F-negative myeloproliferative disorders presenting with erythrocytosis. The aims of this study were to assess the prevalence of JAK2 exon 12 mutations in IE patients, and to determine the associated clinicopathological features.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full activation of protein kinase B (PKB, also called Akt) requires phosphorylation on two regulatory sites, Thr-308 in the activation loop and Ser-473 in the hydrophobic C-terminal regulatory domain (numbering for PKB alpha /Akt-1), Although 3 ' -phosphoinositide-dependent protein kinase 1 (PDK1) has now been identified as the Thr-308 kinase, the mechanism of the Ser-473 phosphorylation remains controversial. As a step to further characterize the Ser-473 kinase, we examined the effects of a range of protein kinase inhibitors on the activation and phosphorylation of PKB. We found that staurosporine, a broad-specificity kinase inhibitor and inducer of cell apoptosis, attenuated PKB activation exclusively through the inhibition of Thr-308 phosphorylation, with Ser-473 phosphorylation unaffected. The increase in Thr-308 phosphorylation because of overexpression of PDK1 was also inhibited by staurosporine, We further show that staurosporine (CGP 39360) potently inhibited PDK1 activity in vitro with an IC50 of similar to0.22 muM. These data indicate that agonist-induced phosphorylation of Ser-473 of PKB is independent of PDK1 or PKB activity and occurs through a distinct Ser-473 kinase that is not inhibited by staurosporine, Moreover, our results suggest that inhibition of PKB signaling is involved in the proapoptotic action of staurosporine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract A classic physiologic response to hypoxia in humans is the up-regulation of the ERYTHROPOIETIN (EPO) gene, which is the central regulator of red blood cell mass. The EPO gene, in turn, is activated by hypoxia inducible factor (HIF). HIF is a transcription factor consisting of an alpha subunit (HIF-alpha) and a beta subunit (HIF-beta). Under normoxic conditions, prolyl hydroxylase domain protein (PHD, also known as HIF prolyl hydroxylase and egg laying-defective nine protein) site specifically hydroxylates HIF-alpha in a conserved LXXLAP motif (where underlining indicates the hydroxylacceptor proline). This provides a recognition motif for the von Hippel Lindau protein, a component of an E3 ubiquitin ligase complex that targets hydroxylated HIF-alpha for degradation. Under hypoxic conditions, this inherently oxygen-dependent modification is arrested, thereby stabilizing HIF-alpha and allowing it to activate the EPO gene. We previously identified and characterized an erythrocytosis-associated HIF2A mutation, G537W. More recently, we reported two additional erythrocytosis-associated HIF2A mutations, G537R and M535V. Here, we describe the functional characterization of these two mutants as well as a third novel erythrocytosis-associated mutation, P534L. These mutations affect residues C-terminal to the LXXLAP motif. We find that all result in impaired degradation and thus aberrant stabilization of HIF-2alpha. However, each exhibits a distinct profile with respect to their effects on PHD2 binding and von Hippel Lindau interaction. These findings reinforce the importance of HIF-2alpha in human EPO regulation, demonstrate heterogeneity of functional defects arising from these mutations, and point to a critical role for residues C-terminal to the LXXLAP motif in HIF-alpha.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian cells respond to nutrient deprivation by inhibiting energy consuming processes, such as proliferation and protein synthesis, and by stimulating catabolic processes, such as autophagy. p70 S6 kinase (S6K1) plays a central role during nutritional regulation of translation. S6K1 is activated by growth factors such as insulin, and by mammalian target of rapamycin (mTOR), which is itself regulated by amino acids. The Class IA phosphatidylinositol (PI) 3-kinase plays a well recognized role in the regulation of S6K1. We now present evidence that the Class III PI 3-kinase, hVps34, also regulates S6K1, and is a critical component of the nutrient sensing apparatus. Overexpression of hVps34 or the associated hVps15 kinase activates S6K1, and insulin stimulation of S6K1 is blocked by microinjection of inhibitory anti-hVps34 antibodies, overexpression of a FYVE domain construct that sequesters the hVps34 product PI(3) P, or small interfering RNA-mediated knock-down of hVps34. hVps34 is not part of the insulin input to S6K1, as it is not stimulated by insulin, and inhibition of hVps34 has no effect on phosphorylation of Akt or TSC2 in insulin-stimulated cells. However, hVps34 is inhibited by amino acid or glucose starvation, suggesting that it lies on the nutrient-regulated pathway to S6K1. Consistent with this, hVps34 is also inhibited by activation of the AMP-activated kinase, which inhibits mTOR/S6K1 in glucose-starved cells. hVps34 appears to lie upstream of mTOR, as small interfering RNA knock- down of hVps34 inhibits the phosphorylation of another mTOR substrate, eIF4E-binding protein-1 (4EBP1). Our data suggest that hVps34 is a nutrient-regulated lipid kinase that integrates amino acid and glucose inputs to mTOR and S6K1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To describe the ocular phenotype in patients with ectrodactyly-ectodermal dysplasia-clefting (EEC) syndrome (MIM#604292) and to determine the pathogenic basis of visual morbidity. Design: Retrospective case series. Participants: Nineteen families (23 patients) affected by EEC syndrome from the United Kingdom, Ireland, and Italy. Methods: General medical examination to fulfill the diagnostic criteria for EEC syndrome and determine the phenotypic severity. Mutational analysis of p63 was performed by polymerase chain reaction-based bidirectional Sanger sequencing. All patients with EEC syndrome underwent a complete ophthalmic examination and ocular surface assessment. Limbal stem cell deficiency (LSCD) was diagnosed clinically on the basis of corneal conjunctivalization and anatomy of the limbal palisades of Vogt. Impression cytology using immunofluorescent antibodies was performed in 1 individual. Histologic and immunohistochemical analyses were performed on a corneal button and corneal pannus from 2 EEC patients. Main Outcome Measures: The EEC syndrome phenotypic severity (EEC score), best-corrected Snellen visual acuity (decimal fraction), slit-lamp biomicroscopy, tear function index, tear breakup time, LSCD, p63 DNA sequence variants, impression cytology, and corneal histopathology. Results: Eleven heterozygous missense mutations in the DNA binding domain of p63 were identified in all patients with EEC syndrome. All patients had ocular involvement and the commonest was an anomaly of the meibomian glands and lacrimal drainage system defects. The major cause of visual morbidity was progressive LSCD, which was detected in 61% (14/23). Limbal stem cell deficiency was related to advancing age and caused a progressive keratopathy, resulting in a dense vascularized corneal pannus, and eventually leading to visual impairment. Histologic analysis and impression cytology confirmed LSCD. Conclusions: Heterozygous p63 mutations cause the EEC syndrome and result in visual impairment owing to progressive LSCD. There was no relationship of limbal stem cell failure with the severity of EEC syndrome, as classified by the EEC score, or the underlying molecular defect in p63. Financial Disclosure(s): The authors have no proprietary or commercial interest in any of the materials discussed in this article. © 2012 American Academy of Ophthalmology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal Transducers and Activators of Transcription (STAT) proteins are a group of latent cytoplasmic transcription factors involved in cytokine signaling. STAT3 is a member of the STAT family and is expressed at elevated levels in a large number of diverse human cancers and is now a validated target for anticancer drug discovery.. Understanding the dynamics of the STAT3 dimer interface, accounting for both protein-DNA and protein-protein interactions, with respect to the dynamics of the latent unphosphorylated STAT3 monomer, is important for designing potential small-molecule inhibitors of the activated dimer. Molecular dynamics (MD) simulations have been used to study the activated STAT3 homodimer:DNA complex and the latent unphosphorylated STAT3 monomer in an explicit water environment. Analysis of the data obtained from MD simulations over a 50 ns time frame has suggested how the transcription factor interacts with DNA, the nature of the conformational changes, and ways in which function may be affected. Examination of the dimer interface, focusing on the protein-DNA interactions, including involvement of water molecules, has revealed the key residues contributing to the recognition events involved in STAT3 protein-DNA interactions. This has shown that the majority of mutations in the DNA-binding domain are found at the protein-DNA interface. These mutations have been mapped in detail and related to specific protein-DNA contacts. Their structural stability is described, together with an analysis of the model as a starting-point for the discovery of novel small-molecule STAT3 inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital or familial erythrocytosis/polycythemia can have many causes, and an emerging cause is genetic disruption of the oxygen-sensing pathway that regulates the Erythropoietin (EPO) gene. More specifically, recent studies have identified erythrocytosis-associated mutations in the HIF2A gene, which encodes for Hypoxia Inducible Factor-2a (HIF-2a), as well as in two genes that encode for proteins that regulate it, Prolyl Hydroxylase Domain protein 2 (PHD2) and the von Hippel Lindau tumor suppressor protein (VHL). We report here the identification of two new heterozygous HIF2A missense mutations, M535T, and F540L, both associated with erythrocytosis. Met-535 has previously been identified as a residue mutated in other patients with erythrocytosis; although, the mutation of this particular residue to Thr has not been reported. In contrast, Phe-540 has not been reported as a residue mutated in erythrocytosis, and we present evidence here that this mutation impairs interaction of HIF-2a with both VHL and PHD2. © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular genetic assays for the detection of the JAK2 V617F (c.1849G>T) and other pathogenetic mutations within JAK2 exon 12 and MPL exon 10 are part of the routine diagnostic workup for patients presenting with erythrocytosis, thrombocytosis or otherwise suspected to have a myeloproliferative neoplasm. A wide choice of techniques are available for the detection of these mutations, leading to potential difficulties for clinical laboratories in deciding upon the most appropriate assay, which can lead to problems with inter-laboratory standardization. Here, we discuss the most important issues for a clinical diagnostic laboratory in choosing a technique, particularly for detection of the JAK2 V617F mutation at diagnosis. The JAK2 V617F detection assay should be both specific and sensitive enough to detect a mutant allele burden as low as 13%. Indeed, the use of sensitive assays increases the detection rate of the JAK2 V617F mutation within myeloproliferative neoplasms. Given their diagnostic relevance, it is also beneficial and relatively straightforward to screen JAK2 V617F negative patients for JAK2 exon 12 mutations (in the case of erythrocytosis) or MPL exon 10 mutations (thrombocytosis or myelofibrosis) using appropriate assays. Molecular results should be considered in the context of clinical findings and other haematological or laboratory results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rab GTPases of the Arabidopsis Rab-E subclass are related to mammalian Rab8 and are implicated in membrane trafficking from the Golgi to the plasma membrane. Using a yeast two-hybrid assay, Arabidopsis phosphatidylinositol-4-phosphate 5-kinase 2 (PtdIns(4)P 5-kinase 2; also known as PIP5K2), was shown to interact with all five members of the Rab-E subclass but not with other Rab subclasses residing at the Golgi or trans-Golgi network. Interactions in yeast and in vitro were strongest with RAB-E1d[Q74L] and weakest with the RAB-E1d[S29N] suggesting that PIP5K2 interacts with the GTP-bound form. PIP5K2 exhibited kinase activity towards phosphatidylinositol phosphates with a free 5-hydroxyl group, consistent with PtdIns(4)P 5-kinase activity and this activity was stimulated by Rab binding. Rab-E proteins interacted with PIP5K2 via its membrane occupancy and recognition nexus (MORN) domain which is missing from animal and fungal PtdIns(4)P 5-kinases. In plant cells, GFP:PIP5K2 accumulated at the plasma membrane and caused YFP:RAB-E1d to relocate there from its usual position at the Golgi. GFP:PIP5K2 was rapidly turned over by proteasomal activity in planta, and overexpression of YFP:PIP5K2 caused pleiotropic growth abnormalities in transgenic Arabidopsis. We propose that plant cells exhibit a novel interaction in which PIP5K2 binds GTP-bound Rab-E proteins, which may stimulate temporally or spatially localized PtdIns(4,5)P(2) production at the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several randomized phase III studies in advanced stage non-small cell lung cancer (NSCLC) confirmed the superior response rate and progression-free survival of using epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor as first-line therapy compared with chemotherapy in patients with activating EGFR mutations. Despite the need for EGFR mutation tests to guide first-line therapy in East Asian NSCLC, there are no current standard clinical and testing protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inhibition of the PI3K (phosphoinositide 3-kinase)/Akt/mTORC1 (mammalian target of rapamycin complex 1) and Ras/MEK [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase]/ERK pathways for cancer therapy has been pursued for over a decade with limited success. Emerging data have indicated that only discrete subsets of cancer patients have favourable responses to these inhibitors. This is due to genetic mutations that confer drug insensitivity and compensatory mechanisms. Therefore understanding of the feedback mechanisms that occur with respect to specific genetic mutations may aid identification of novel biomarkers that predict patient response. In the present paper, we show that feedback between the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways is cell-line-specific and highly dependent on the activating mutation of K-Ras or overexpression c-Met. We found that cell lines exhibited differential signalling and apoptotic responses to PD184352, a specific MEK inhibitor, and PI103, a second-generation class I PI3K inhibitor. We reveal that feedback from the PI3K/Akt/mTORC1 to the Ras/MEK/ERK pathway is present in cancer cells harbouring either K-Ras activating mutations or amplification of c-Met but not the wild-type counterparts. Moreover, we demonstrate that inhibition of protein phosphatase activity by OA (okadaic acid) restored PI103-mediated feedback in wild-type cells. Together, our results demonstrate a novel mechanism for feedback between the PI3K/Akt/mTORC1 and the Ras/MEK/ERK pathways that only occurs in K-Ras mutant and c-Met amplified cells but not the isogenic wild-type cells through a mechanism that may involve inhibition of a specific endogenous phosphatase(s) activity. We conclude that monitoring K-Ras and c-Met status are important biomarkers for determining the efficacy of PI103 and other PI3K/Akt inhibitors in cancer therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p130(Cas) (crk associated substrate) has the structural characteristics of an adapter protein, containing multiple consensus SH2 binding sites, an SH3 domain, and a proline-rich domain. The structure of p130(Cas) suggests that it may act to provide a framework for protein-protein interactions; however, as yet, its functional role in cells is unknown. In this report we show that p130(Cas) is localized to focal adhesions. We demonstrate that p130(Cas) associates both in vitro and in vivo with pp125(FAK) (focal adhesion kinase), a kinase implicated in signaling by the integrin family of cell adhesion receptors. p130(Cas) also associates with pp41/43(FRNK) (pp125(FAK)-related, non-kinase), an autonomously expressed form of pp125(FAK) composed of only the C-terminal noncatalytic domain. We show that the association of p130(Cas) with pp125(Fak) and pp41/43(FRNK) is direct, and is mediated by the binding of the SH3 domain of p130(Cas) to a proline-rich sequence present in both the C terminus of pp125(FAK) and in pp41/43(FRNK). In agreement with recent studies we show that p130(Cas) is tyrosine-phosphorylated upon integrin mediated cell adhesion. The association of p130(Cas) with pp125(FAK), a kinase which is activated upon cell adhesion, is likely to be functionally important in integrin mediated signal transduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interactions of epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha) with the epidermal growth factor receptor (EGFR) were examined by insertion mutagenesis of the receptor. Seventeen insertions were made throughout a construct containing only the extracellular domain. This truncated receptor (sEGFR) was secreted and had a dissociation constant similar to that of the full-length solubilized receptor. Receptors with insertions within subdomain III were not secreted. Two receptors with insertions at positions 291 and 474, which border subdomain III, have significantly decreased binding to both EGF and TGF alpha relative to wild type. This confirms previous work demonstrating that subdomain III forms the primary binding site for EGF and TGF alpha. Four of the mutants within subdomain II had a decreased binding to TGF alpha relative to wild type, but had wild type binding to EGF. These results suggest that a region within subdomain II may selectively regulate the binding of TGF alpha. Two receptors which contained insertions within subdomains II and IV, approximately equidistant from the center of subdomain III, bound twofold more ligand molecules than wild type receptor, with an affinity similar to that of wild type receptor. These findings suggest that insertion at these positions allows the access of more than one ligand molecule to the binding site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying rare, highly penetrant risk mutations may be an important step in dissecting the molecular etiology of schizophrenia. We conducted a gene-based analysis of large (>100kb), rare copy number variants (CNVs) in the Wellcome Trust Case Control Consortium 2 (WTCCC2) schizophrenia sample of 1,564 cases and 1,748 controls all from Ireland, and further extended the analysis to include an additional 5,196 UK controls. We found association with duplications at chr20p12.2 (P=0.007) and evidence of replication in large independent European schizophrenia (P=0.052) and UK bipolar disorder case-control cohorts (P=0.047). A combined analysis of Irish/UK subjects including additional psychosis cases (schizophrenia and bipolar disorder) identified 22 carriers in 11,707 cases and 10 carriers in 21,204 controls (meta-analysis CMH P value=2x10(-4) (odds ratio (OR)=11.3, 95% CI=3.7, ∞)). Nineteen of the 22 cases and 8 of the 10 controls carried duplications starting at 9.68Mb with similar breakpoints across samples. By haplotype analysis and sequencing we identified a tandem ∼149kb duplication overlapping the gene p21 Protein-Activated Kinase 7 (PAK7, also called PAK5) which was in linkage disequilibrium with local haplotypes (P=2.5x10(-21)), indicative of a single ancestral duplication event. We confirmed the breakpoints in 8/8 carriers tested and found co-segregation of the duplication with illness in two additional family members of one of the affected probands. We demonstrate that PAK7 is developmentally co-expressed with another known psychosis risk gene (DISC1) suggesting a potential molecular mechanism involving aberrant synapse development and plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ataxia telangiectasia mutated (ATM) is an important signaling molecule in the DNA damage response (DDR). ATM loss of function can produce a synthetic lethal phenotype in combination with tumor-associated mutations in FA/BRCA pathway components. In this study, we took an siRNA screening strategy to identify other tumor suppressors that, when inhibited, similarly sensitized cells to ATM inhibition. In this manner, we determined that PTEN and ATM were synthetically lethal when jointly inhibited. PTEN-deficient cells exhibited elevated levels of reactive oxygen species, increased endogenous DNA damage, and constitutive ATM activation. ATM inhibition caused catastrophic DNA damage, mitotic cell cycle arrest, and apoptosis specifically in PTEN-deficient cells in comparison with wild-type cells. Antioxidants abrogated the increase in DNA damage and ATM activation in PTEN-deficient cells, suggesting a requirement for oxidative DNA damage in the mechanism of cell death. Lastly, the ATM inhibitor KU-60019 was specifically toxic to PTEN mutant cancer cells in tumor xenografts and reversible by reintroduction of wild-type PTEN. Together, our results offer a mechanistic rationale for clinical evaluation of ATM inhibitors in PTEN-deficient tumors.