38 resultados para JAPANESE OYSTER


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice has been demonstrated to be one of the major contributors to inorganic arsenic (i-As) intake in humans. However, little is known about rice products as additional source of i-As exposure. In this study, misos, syrups and amazake (a fermented sweet rice drink) produced from rice, barley and millet were analysed for total arsenic (t-As) and a subset of samples were also analyzed for As speciation. Rice based products displayed a higher i-As content than those derived from barley and millet. Most of the t-As in the rice products studied was inorganic (63-83%), the remainder being dimethylarsinic acid. Those who regularly consume rice drinks and condiments, such as the Japanese population and those who follow health conscious diets based on the Japanese cuisine, could reach up to 23% of the World Health Organization's Provisional Tolerable Daily Intake of i-As, by only consuming these kinds of products. This study provides a wide appreciation of how i-As derived from rice based products enters the human diet and how this may be of concern to populations who are already exposed to high levels of i-As through consumption of foods such as rice and seaweed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rice has been demonstrated to be one of the major contributors to arsenic (As) in human diets in addition to drinking water, but little is known about rice products as an additional source of As exposure. Rice products were analyzed for total As and a subset of samples were measured for arsenic speciation using high performance liquid chromatography interfaced with inductively coupled plasma-mass spectrometry (HPLC-ICP-MS). A wide range of rice products had total and inorganic arsenic levels that typified those found in rice grain including, crisped rice, puffed rice, rice crackers, rice noodles and a range of Japanese rice condiments as well as rice products targeted at the macrobiotic, vegan, lactose intolerant and gluten intolerance food market. Most As in rice products are inorganic As (75.2-90.1%). This study provides a wider appreciation of how inorganic arsenic derived from rice products enters the human diet. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oscillating wave surge converters (OWSCs) are a class of wave power technology that exploits the enhanced horizontal fluid particle movement of waves in the nearshore coastal zone with water depths of 10–20 m. OWSCs predominantly oscillate horizontally in surge as opposed to the majority of wave devices, which oscillate vertically in heave and usually are deployed in deeper water. The characteristics of the nearshore wave resource are described along with the hydrodynamics of OWSCs. The variables in the OWSC design space are discussed together with a presentation of some of their effects on capture width, frequency bandwidth response and power take-off characteristics. There are notable differences between the different OWSCs under development worldwide, and these are highlighted. The final section of the paper describes Aquamarine Power’s 315kW Oyster 1 prototype, which was deployed at the European Marine Energy Centre in August 2009. Its place in the OWSC design space is described along with the practical experience gained. This has led to the design of Oyster 2, which was deployed in August 2011. It is concluded that nearshore OWSCs are serious contenders in the mix of wave power technologies. The nearshore wave climate has a narrower directional spread than the offshore, the largest waves are filtered out and the exploitable resource is typically only 10–20% less in 10m depth compared with 50m depth. Regarding the devices, a key conclusion is that OWSCs such as Oyster primarily respond in the working frequency range to the horizontal fluid acceleration; Oyster is not a drag device responding to horizontal fluid velocity. The hydrodynamics of Oyster is dominated by inertia with added inertia being a very significant contributor. It is unlikely that individual flap modules will exceed 1MW in installed capacity owing to wave resource, hydrodynamic and economic constraints. Generating stations will be made up of line arrays of flaps with communal secondary power conversion every 5–10 units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This short paper, structured in 3 distinct sections will touch on some of the key features of the Oyster wave energy device and its recent development. The first section discusses the nature of the resource in the nearshore environment,
some common misunderstandings in relation to it and its suitability for exploitation of commercial wave energy. In the second section a brief description of some of the fundamentals governing flap type devices is given. This serves to emphasise core differences between the Oyster device and other devices. Despite the simplicity of the design and the operation of the device itself, it is shown that Oyster occupies a theoretical space which is substantially outside most established theories and axioms in wave energy. The third section will give a short summary of the recent developments in the design of the Oyster 2 project and touch on how its enhanced features deal with some of the key commercial and technical challenges present in the sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oyster® is a surface-piercing flap-type device designed to harvest wave energy in the nearshore environment. Established mathematical theories of wave energy conversion, such as 3D point-absorber and 2D terminator theory, are inadequate to accurately describe the behaviour of Oyster, historically resulting in distorted conclusions regarding the potential of such a concept to harness the power of ocean waves. Accurately reproducing the dynamics of Oyster requires the introduction of a new reference mathematical model, the “flap-type absorber”. A flap-type absorber is a large thin device which extracts energy by pitching about a horizontal axis parallel to the ocean bottom. This paper unravels the mathematics of Oyster as a flap-type absorber. The main goals of this work are to provide a simple–yet accurate–physical interpretation of the laws governing the mechanism of wave power absorption by Oyster and to emphasise why some other, more established, mathematical theories cannot be expected to accurately describe its behaviour.