21 resultados para Interdisciplinary approach to knowledge


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic approach to develop the teaching of instrumental analytical chemistry is discussed, as well as a conceptual framework for organizing and executing lectures and a laboratory course. Three main components are used in this course: theoretical knowledge developed in the classroom, simulations via a virtual laboratory, and practical training via experimentation. Problem-based learning and cooperative-learning methods are applied in both the classroom and laboratory aspects of the course. In addition, some reflections and best practices are presented on how to encourage students to learn actively. Overall, a student-centered environment is proposed that aims to cultivate students' practical abilities and individual talents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various scientific studies have explored the causes of violent behaviour from different perspectives, with psychological tests, in particular, applied to the analysis of crime factors. The relationship between bi-factors has also been extensively studied including the link between age and crime. In reality, many factors interact to contribute to criminal behaviour and as such there is a need to have a greater level of insight into its complex nature. In this article we analyse violent crime information systems containing data on psychological, environmental and genetic factors. Our approach combines elements of rough set theory with fuzzy logic and particle swarm optimisation to yield an algorithm and methodology that can effectively extract multi-knowledge from information systems. The experimental results show that our approach outperforms alternative genetic algorithm and dynamic reduct-based techniques for reduct identification and has the added advantage of identifying multiple reducts and hence multi-knowledge (rules). Identified rules are consistent with classical statistical analysis of violent crime data and also reveal new insights into the interaction between several factors. As such, the results are helpful in improving our understanding of the factors contributing to violent crime and in highlighting the existence of hidden and intangible relationships between crime factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern approaches to biomedical research and diagnostics targeted towards precision medicine are generating ‘big data’ across a range of high-throughput experimental and analytical platforms. Integrative analysis of this rich clinical, pathological, molecular and imaging data represents one of the greatest bottlenecks in biomarker discovery research in cancer and other diseases. Following on from the publication of our successful framework for multimodal data amalgamation and integrative analysis, Pathology Integromics in Cancer (PICan), this article will explore the essential elements of assembling an integromics framework from a more detailed perspective. PICan, built around a relational database storing curated multimodal data, is the research tool sitting at the heart of our interdisciplinary efforts to streamline biomarker discovery and validation. While recognizing that every institution has a unique set of priorities and challenges, we will use our experiences with PICan as a case study and starting point, rationalizing the design choices we made within the context of our local infrastructure and specific needs, but also highlighting alternative approaches that may better suit other programmes of research and discovery. Along the way, we stress that integromics is not just a set of tools, but rather a cohesive paradigm for how modern bioinformatics can be enhanced. Successful implementation of an integromics framework is a collaborative team effort that is built with an eye to the future and greatly accelerates the processes of biomarker discovery, validation and translation into clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – This paper aims to contribute towards understanding how safety knowledge can be elicited from railway experts for the purposes of supporting effective decision-making. Design/methodology/approach – A consortium of safety experts from across the British railway industry is formed. Collaborative modelling of the knowledge domain is used as an approach to the elicitation of safety knowledge from experts. From this, a series of knowledge models is derived to inform decision-making. This is achieved by using Bayesian networks as a knowledge modelling scheme, underpinning a Safety Prognosis tool to serve meaningful prognostics information and visualise such information to predict safety violations. Findings – Collaborative modelling of safety-critical knowledge is a valid approach to knowledge elicitation and its sharing across the railway industry. This approach overcomes some of the key limitations of existing approaches to knowledge elicitation. Such models become an effective tool for prediction of safety cases by using railway data. This is demonstrated using passenger–train interaction safety data. Practical implications – This study contributes to practice in two main directions: by documenting an effective approach to knowledge elicitation and knowledge sharing, while also helping the transport industry to understand safety. Social implications – By supporting the railway industry in their efforts to understand safety, this research has the potential to benefit railway passengers, staff and communities in general, which is a priority for the transport sector. Originality/value – This research applies a knowledge elicitation approach to understanding safety based on collaborative modelling, which is a novel approach in the context of transport.