95 resultados para Infinite.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of module shape, module design, three dimensional flow field generated by modules, and partition of primary nozzle on the performance of an infinite array linear clustered plug nozzle are discussed. The module shape is a critical element for nozzle performance and the partition of the primary nozzle with round-to square modules causes a vacuum thrust reduction with respect to two-dimensional model. The performance analysis of different module configuration allows weighing separately the role of clustering and the role of module design. In operating conditions characterized by turned off modules the performance loss is larger, but the difference due to the module shape are smaller and mostly due to the module contribution. The performance of the plug nozzle can be improved by module design, which reduces the module exit flow nonuniformity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of infinite time performance of model predictive controllers applied to constrained nonlinear systems. The total performance is compared with a finite horizon optimal cost to reveal performance limits of closed-loop model predictive control systems. Based on the Principle of Optimality, an upper and a lower bound of the ratio between the total performance and the finite horizon optimal cost are obtained explicitly expressed by the optimization horizon. The results also illustrate, from viewpoint of performance, how model predictive controllers approaches to infinite optimal controllers as the optimization horizon increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Distributed quantum information processing (QIP) is a promising way to bypass problems due to unwanted interactions between elements. However, this strategy presupposes the engineering of protocols for remote processors. In many of them, pairwise entanglement is a key resource. We study a model which distributes entanglement among elements of a delocalized network without local control. The model is efficient both in finite- and infinite-dimensional Hilbert spaces. We suggest a setup of electromechanical systems to implement our proposal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[M2L3] coordination cages and linear [M2L3]infinity polymers of the rigid, bridging diphosphines bis(diphenylphosphino)acetylene (dppa) and trans-1,2-bis(diphenylphosphino)ethylene (dppet) with silver(I) salts have been investigated in the solution and solid states. Unlike flexible diphosphines, 1:1 dppa/AgX mixtures do not selectively form discrete [Ag2(diphos)2(X)2] macrocycles; instead dynamic mixtures of one-, two- and three-coordinate complexes are formed. However, 3:2 dppa/AgX ratios (X = SbF6. BF4, O3SCF3 or NO3) do lead selectively to new [M2L3] triply bridged cage complexes [Ag2(dppa)3(X)2] 1a-d (X = SbF6 a, BF4 b, O3SCF3 c, NO3 d), which do not exhibit Ag-P bond dissociation at room temperature on the NMR time scale (121 MHz). Complexes la-d were characterised by X-ray crystallography and were found to have small internal cavities, helical conformations and multiple intramolecular aromatic interactions. The nucleophilicity of the anion subtly influences the cage shape: Increasing nucleophilicity from SbF6 (1a) through BF4 (1b) and O3SCF3 (1c) to NO3 (1d) increases the pyramidal distortion at the AgP3 centres, stretching the cage framework (with Ag...Ag distances increasing from 5.48 in 1a to 6.21 A in 1d) and giving thinner internal cavities. Crystal packing strongly affected the size of the helical twist angle, and no correlation between this parameter and the Ag-Ag distance was observed. When crystalline 1c was stored in its supernatant for 16 weeks, conversion occured to the isostoichiometric [M2L3]infinity coordination polymer [Ag(dppa)2Ag(dppa)(O3SCF3)2]infinity (1c'). X-ray crystallography revealed a structure with ten-membered Ag2(dppa)2 rings linked into infinite one-dimensional chains by a third dppa unit. The clear structural relationship between this polymer and the precursor cage 1c suggests a novel example of ring-opening polymerisation. With dppet, evidence for discrete [M2L3] cages was also found in solution, although 31P NMR spectroscopy suggested some Ag-P bond dissociation. On crystallisation, only the corresponding ring-opened polymeric structures [M2L3]infinity could be obtained. This may be because the greater steric bulk of dppet versus dppa destabilises the cage and favours the ring-opening polymerisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We prove that every unital spectrally bounded operator from a properly infinite von Neumann algebra onto a semisimple Banach algebra is a Jordan homomorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is shown that virtual H- formation has a profound effect upon low-energy Ps(1s)-H(1s) scattering, yet H- formation only accounts for about 10% of the total cross section just above threshold. Infinite series of Rydberg resonances converging on to the H- formation threshold are seen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There have been theoretical and experimental studies on quantum nonlocality for continuous variables, based on dichotomic observables. In particular, we are interested in two cases of dichotomic observables for the light field of continuous variables: One case is even and odd numbers of photons and the other case is no photon and the presence of photons. We analyze various observables to give the maximum violation of Bell's inequalities for continuous-variable states. We discuss an observable which gives the violation of Bell's inequality for any entangled pure continuous-variable state. However, it does not have to be a maximally entangled state to give the maximal violation of Bell's inequality. This is attributed to a generic problem of testing the quantum nonlocality of an infinite- dimensional state using a dichotomic observable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode system is embedded in a thermal environment, however, each mode may not be entangled with its environment by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total system, which is composed of an entangled two-mode system and a thermal environment. The Markovian interaction with the environment is concerned with an array of infinite number of beam splitters. It is shown that many-body entanglement of the system and the environment may play a crucial role in the process of disentangling the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a scheme to physically interface superconducting nanocircuits and quantum optics. We address the transfer of quantum information between systems having different physical natures and defined in Hilbert spaces of different dimensions. In particular, we investigate the transfer of the entanglement initially in a nonclassical state of an infinite dimensional system to a pair of superconducting charge qubits. This setup is able to drive an initially separable state of the qubits into an almost pure, highly entangled state suitable for quantum information processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate entanglement between collective operators of two blocks of oscillators in an infinite linear harmonic chain. These operators are defined as averages over local operators (individual oscillators) in the blocks. On the one hand, this approach of "physical blocks" meets realistic experimental conditions, where measurement apparatuses do not interact with single oscillators but rather with a whole bunch of them, i.e., where in contrast to usually studied "mathematical blocks" not every possible measurement is allowed. On the other, this formalism naturally allows the generalization to blocks which may consist of several noncontiguous regions. We quantify entanglement between the collective operators by a measure based on the Peres-Horodecki criterion and show how it can be extracted and transferred to two qubits. Entanglement between two blocks is found even in the case where none of the oscillators from one block is entangled with an oscillator from the other, showing genuine bipartite entanglement between collective operators. Allowing the blocks to consist of a periodic sequence of subblocks, we verify that entanglement scales at most with the total boundary region. We also apply the approach of collective operators to scalar quantum field theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A many-body theory approach is developed for the problem of positron-atom scattering and annihilation. Strong electron- positron correlations are included nonperturbatively through the calculation of the electron-positron vertex function. It corresponds to the sum of an infinite series of ladder diagrams, and describes the physical effect of virtual positronium formation. The vertex function is used to calculate the positron-atom correlation potential and nonlocal corrections to the electron-positron annihilation vertex. Numerically, we make use of B-spline basis sets, which ensures rapid convergence of the sums over intermediate states. We have also devised an extrapolation procedure that allows one to achieve convergence with respect to the number of intermediate- state orbital angular momenta included in the calculations. As a test, the present formalism is applied to positron scattering and annihilation on hydrogen, where it is exact. Our results agree with those of accurate variational calculations. We also examine in detail the properties of the large correlation corrections to the annihilation vertex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brown's model for the relaxation of the magnetization of a single domain ferromagnetic particle is considered. This model results in the Fokker-Planck equation of the process. The solution of this equation in the cases of most interest is non- trivial. The probability density of orientations of the magnetization in the Fokker-Planck equation can be expanded in terms of an infinite set of eigenfunctions and their corresponding eigenvalues where these obey a Sturm-Liouville type equation. A variational principle is applied to the solution of this equation in the case of an axially symmetric potential. The first (non-zero) eigenvalue, corresponding to the largest time constant, is considered. From this we obtain two new results. Firstly, an approximate minimising trial function is obtained which allows calculation of a rigorous upper bound. Secondly, a new upper bound formula is derived based on the Euler-Lagrange condition. This leads to very accurate calculation of the eigenvalue but also, interestingly, from this, use of the simplest trial function yields an equivalent result to the correlation time of Coffey et at. and the integral relaxation time of Garanin. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a non-standard application of the Wannier model. A physical example is the single ionization of a hydrogenic beryllium ion with a fully stripped beryllium ion, where the ratio of the charge of the third particle to the charges of the escaping particles is 1/4; we investigate the single ionization by an electron of an atom comprising an electron and a nucleus of charge 1/4. An infinite exponent is obtained suggesting that this process is not tractable within the Wannier model. A modified version of Crothers' uniform semiclassical wavefunction for the outgoing particles has been adopted, since the Wannier exponents and are infinite for an effective charge of Z = 1/4. We use Bessel functions to describe the Peterkop functions u and u and derive a new turning point ?. Since u is well behaved at infinity, there exists only the singularity in u at infinity, thus we employ a one- (rather than two-) dimensional change of dependent variable, ensuring that a uniform solution is obtained that avoids semiclassical breakdown on the Wannier ridge. The regularized final-state asymptotic wavefunction is employed, along with a continuum-distorted-wave approximation for the initial-state wavefunction to obtain total cross sections on an absolute scale. © 2006 IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The configuration interaction (CI) approach to quantum chemical calculations is a well-established means of calculating accurately the solution to the Schrodinger equation for many-electron systems. It represents the many-body electron wavefunction as a sum of spin-projected Slater determinants of orthogonal one-body spin-orbitals. The CI wavefunction becomes the exact solution of the Schrodinger equation as the length of the expansion becomes infinite, however, it is a difficult quantity to visualise and analyse for many-electron problems. We describe a method for efficiently calculating the spin-averaged one- and two-body reduced density matrices rho(psi)((r) over bar; (r) over bar' ) and Gamma(psi)((r) over bar (1), (r) over bar (2); (r) over bar'(1), (r) over bar'(2)) of an arbitrary CI wavefunction Psi. These low-dimensional functions are helpful tools for analysing many-body wavefunctions; we illustrate this for the case of the electron-electron cusp. From rho and Gamma one can calculate the matrix elements of any one- or two-body spin-free operator (O) over cap. For example, if (O) over cap is an applied electric field, this field can be included into the CI Hamiltonian and polarisation or gating effects may be studied for finite electron systems. (C) 2003 Elsevier B.V. All rights reserved.