161 resultados para Incident waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-cadence multiwavelength optical observations were taken with the Dunn Solar Telescope at the National Solar Observatory, Sacramento Peak, accompanied by Advanced Stokes Polarimeter vector magnetograms. A total of 11 network bright points (NBPs) have been studied at different atmospheric heights using images taken in wave bands centered on Mg I b(1) - 0.4 Angstrom, Halpha, and Ca II K-3. Wavelet analysis was used to study wave packets and identify traveling magnetohydrodynamic waves. Wave speeds were estimated through the temporal cross-correlation of signals, in selected frequency bands of wavelet power, in each wavelength. Four mode-coupling cases were identified, one in each of four of the NBPs, and the variation of the associated Fourier power with height was studied. Three of the detected mode-coupling, transverse-mode frequencies were observed in the 1.2-1.6 mHz range (mean NBP apparent flux density magnitudes over 99-111 Mx cm(-2)), with the final case showing 2.0-2.2 mHz (with 142 Mx cm(-2)). Following this, longitudinal-mode frequencies were detected in the range 2.6-3.2 mHz for three of our cases, with 3.9-4.1 mHz for the remaining case. After mode coupling, two cases displayed a decrease in longitudinal-mode Fourier power in the higher chromosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anisotropic metamaterials composed of 2D periodic infi- nite and finite periodic lattices of lumped inductor (L) and capacitor (C) circuits have been explored. The unique features of wave channeling on such anisotropic lattices and scattering at their interfaces and edges are reviewed and illustrated by the examples of the specific arrangements. The lattice unit cells composed of inductors and capacitors (basic mesh) as well as of assemblies comprised of double series, double parallel, and mixed parallel-series L-C circuits are discussed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the modulational instability of nonlinearly interacting two-dimensional waves in deep water, which are described by a pair of two-dimensional coupled nonlinear Schrodinger equations. We derive a nonlinear dispersion relation. The latter is numerically analyzed to obtain the regions and the associated growth rates of the modulational instability. Furthermore, we follow the long term evolution of the latter by means of computer simulations of the governing nonlinear equations and demonstrate the formation of localized coherent wave envelopes. Our results should be useful for understanding the formation and nonlinear propagation characteristics of large-amplitude freak waves in deep water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical and numerical studies are carried out of the nonlinear amplitude modulation of dust-ion acoustic waves propagating in an unmagnetized weakly coupled plasma comprised of electrons, positive ions, and charged dust grains, considering perturbations oblique to the carrier wave propagation direction. The stability analysis, based on a nonlinear Schrodinger-type equation, exhibits a wide instability region, which depends on both the angle theta between the modulation and propagation directions and the dust number density n(d). Explicit expressions for the instability increment and threshold are obtained. The possibility and conditions for the existence of different types of localized excitations are also discussed. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spectral dispersion of light on a finite-size surface plasmon polaritonic (SPP) crystal has been studied. The angular wavelength separation of one or more orders of magnitude higher than in other state-of-the-art wavelength-splitting devices available to date has been demonstrated. The two-stage process is responsible for the dispersion value, which involves conversion of the incident light into SPP Bloch modes of a nanostructure followed by the SPP Bloch waves refraction at the SPP crystal boundary. The high spectral dispersion achievable in plasmonic devices may be useful for integrated high-resolution spectroscopy in nanophotonic, optical communication and lab-on-a-chip applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear propagation of ion-sound waves in a collisionless dense electron-ion magnetoplasma is investigated. The inertialess electrons are assumed to follow a non-Boltzmann distribution due to the pressure for the Fermi plasma and the ions are described by the hydrodynamic (HD) equations. An energy balance-like equation involving a new Sagdeev-type pseudo-potential is derived in the presence of the quantum statistical effects. Numerical calculations reveal that the profiles of the Sagdeev-like potential and the ion-sound density excitations are significantly affected by the wave direction cosine and the Mach number. The present studies might be helpful to understand the excitation of nonlinear ion-sound waves in dense plasmas such as those in superdense white dwarfs and neutron stars as well as in intense laser-solid density plasma experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear propagation of finite amplitude ion acoustic solitary waves in a plasma consisting of adiabatic warm ions, nonisothermal electrons, and a weakly relativistic electron beam is studied via a two-fluid model. A multiple scales technique is employed to investigate the nonlinear regime. The existence of the electron beam gives rise to four linear ion acoustic modes, which propagate at different phase speeds. The numerical analysis shows that the propagation speed of two of these modes may become complex-valued (i.e., waves cannot occur) under conditions which depend on values of the beam-to-background-electron density ratio , the ion-to-free-electron temperature ratio , and the electron beam velocity v0; the remaining two modes remain real in all cases. The basic set of fluid equations are reduced to a Schamel-type equation and a linear inhomogeneous equation for the first and second-order potential perturbations, respectively. Stationary solutions of the coupled equations are derived using a renormalization method. Higher-order nonlinearity is thus shown to modify the solitary wave amplitude and may also deform its shape, even possibly transforming a simple pulse into a W-type curve for one of the modes. The dependence of the excitation amplitude and of the higher-order nonlinearity potential correction on the parameters , , and v0 is numerically investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear properties of two-dimensional cylindrical quantum dust-ion-acoustic (QDIA) and quantum dust-acoustic (QDA) waves are studied in a collisionless, unmagnetized and dense (quantum) dusty plasma. For this purpose, the reductive perturbation technique is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining the cylindrical Kadomtsev–Petviashvili (CKP) equations. The effects of quantum diffraction, as well as quantum statistical and geometric effects on the profiles of QDIA and QDA solitary waves are examined. It is found that the amplitudes and widths of the nonplanar QDIA and QDA waves are significantly affected by the quantum electron tunneling effect. The addition of a dust component to a quantum plasma is seen to affect the propagation characteristics of localized QDIA excitations. In the case of low-frequency QDA waves, this effect is even stronger, since the actual form of the potential solitary waves, in fact, depends on the dust charge polarity (positive/negative) itself (allowing for positive/negative potential forms, respectively). The relevance of the present investigation to metallic nanostructures is highlighted.