50 resultados para IP enforcement
Resumo:
This paper presents a new packet scheduling scheme called agent-based WFQ to control and maintain QoS parameters in virtual private networks (VPNs) within the confines of adaptive networks. Future networks are expected to be open heterogeneous environments consisting of more than one network operator. In this adaptive environment, agents act on behalf of users or third-party operators to obtain the best service for their clients and maintain those services through the modification of the scheduling scheme in routers and switches spanning the VPN. In agent-based WFQ, an agent on the router monitors the accumulated queuing delay for each service. In order to control and to keep the end-to-end delay within the bounds, the weights for services are adjusted dynamically by agents on the routers spanning the VPN. If there is an increase or decrease in queuing delay of a service, an agent on a downstream router informs the upstream routers to adjust the weights of their queues. This keeps the end-to-end delay of services within the specified bounds and offers better QoS compared to VPNs using static WFQ. This paper also describes the algorithm for agent-based WFQ, and presents simulation results. (C) 2003 Elsevier Science Ltd. All rights reserved.
SP and IP Monitoring of Biogeochemical Evolution Activity of SRBs in a Simplified Winogradsky Column
Resumo:
We present a set of Roche tomography reconstructions of the secondary stars in the cataclysmic variables AM Her, QQ Vul, IP Peg and HU Aqr. The image reconstructions show distinct asymmetries in the irradiation pattern for all four systems that can be attributed to shielding of the secondary star by the accretion stream/column in AM Her, QQ Vul and HU Aqr, and increased irradiation by the bright-spot in IP Peg. We use the entropy landscape technique to derive accurate system parameters (M-1, M-2, i and gamma) for the four binaries. In principle, this technique should provide the most reliable mass determinations available, since the intensity distribution across the secondary star is known. We also find that the intensity distribution can systematically affect the value of gamma derived from circular orbit fits to radial velocity variations.