69 resultados para INXGA1-XSB CRYSTALS
Resumo:
A dynamically adaptive radar absorber is described which is based on a periodic array of microstrip patches that are printed on a 500 mu m-thick liquid crystal substrate. The measured reflectivity of the structure is less than -38 dB with a 200 MHz -10 dB bandwidth at 10.19 GHz when a +4 DC bias is applied. It is shown that a 34 dB reduction in signal loss occurs when the bias voltage is increased to 20 V.
Resumo:
We study the structural effects produced by the quantization of vibrational degrees of freedom in periodic crystals at zero temperature. To this end we introduce a methodology based on mapping a suitable subspace of the vibrational manifold and solving the Schrödinger equation in it. A number of increasingly accurate approximations ranging from the quasiharmonic approximation (QHA) to the vibrational self-consistent field (VSCF) method and the exact solution are described. A thorough analysis of the approximations is presented for model monatomic and hydrogen-bonded chains, and results are presented for a linear H-F chain where the potential-energy surface is obtained via first-principles electronic structure calculations. We focus on quantum nuclear effects on the lattice constant and show that the VSCF is an excellent approximation, meaning that correlation between modes is not extremely important. The QHA is excellent for covalently bonded mildly anharmonic systems, but it fails for hydrogen-bonded ones. In the latter, the zero-point energy exhibits a nonanalytic behavior at the lattice constant where the H atoms center, which leads to a spurious secondary minimum in the quantum-corrected energy curve. An inexpensive anharmonic approximation of noninteracting modes appears to produce rather good results for hydrogen-bonded chains for small system sizes. However, it converges to the incorrect QHA results for increasing size. Isotope effects are studied for the first-principles H-F chain. We show how the lattice constant and the H-F distance increase with decreasing mass and how the QHA proves to be insufficient to reproduce this behavior.
Resumo:
Ionic liquid crystals were obtained by coupling one or two mesogenic units (cholesterol or cyanobiphenyl) to an imidazolium cation. Anions are bromide, bis(trifluoromethylsulfonyl)imide, and tetrakis(2-thenoyltrifluoroacetonato)europate(III). The mesomorphism of the compounds depends on the type and number of mesogenic units and on the type of anion. In general, the most stable mesophases are observed for the bis(trifluoromethylsulfonyl)imide salts. Most of the compounds containing cholesterol moieties show enantiotropic SmA* phases over a broad temperature range, and some of them are room temperature liquid crystals. Modeling of the small-angle X-ray scattering patterns revealed the molecular arrangement in these mesophases. On the contrary, most of the compounds containing cyanobiphenyl groups exhibit monotropic lamellar or nematic mesophases, depending on the number of mesogenic units. The imidazolium salts containing the tetrakis(2-thenoyltrifluoroacetonato)europate(III) anion show an intense red photoluminescence.
Resumo:
Tetracatenar liquid crystals were obtained by substituting the 1,10-phenanthroline central core unit at the 3- and 8-positions by extended, rigid acetylene moieties, equipped at the termini with two alkoxy chains of various lengths (n = 6, 8, 10, 12, 14). The liquid crystals exhibit a rich mesomorphism including smectic C, cubic, hexagonal and rectangular columnar phases, depending on the alkoxy chain length. The corresponding rhenium(I) complexes containing the bulky [ReBr(CO)3] fragment are not liquid-crystalline. The ligands and rhenium(I) complexes were investigated by scanning tunneling microscopy (STM). Both the ligands and the rhenium(I) complexes can be self-assembled into monolayers at the TCB–graphite and octanoic acid–graphite interfaces. The ligands and rhenium(I) complexes are luminescent.
Resumo:
N-Alkyl-N-methylpyrrolidinium cations have been used for the design of ionic liquid crystals, including a new type of uranium-containing metallomesogen. Pyrrolidinium salts with bromide, bis(trifluoromethylsulfonyl)-imide, tetrafluoroborate, hexafluorophosphate, thiocyanate, tetrakis(2-thenoyltrifluoroacetonato)europate(III) and tetrabromouranyl] counteranions were prepared. For the bromide salts and tetrabromouranyl compounds, the chain length of the alkyl group CnH2n+1 was varied from eight to twenty carbon atoms (n =8. 10-20). The compounds show rich mesomorphic behaviour: highly ordered smectic phases (the crystal smectic E phase and the uncommon crystal smectic T phase), smectic A phases, and hexagonal. columnar phases were observed, depending on chain length and anion. This work gives better insight into the nature and formation of the crystal smectic T phase, and the Molecular requirements for the appearance of this highly ordered phase. This uncommon tetragonal mesophase is thoroughly discussed on the basis of detailed powder X-ray diffraction experiments and in relation to the existing literature. Structural models are proposed for self-assembly of the molecules within the smectic layers. In addition, the photophysical properties of the compounds containing a metal complex anion were investigated. For the uranium-containing mesogens, luminescence can be induced by dissolving them in an ionic: liquid matrix. The europium-containing compound shows intense red photoluminescence with high colour Purity.
Resumo:
New ionic liquid crystals (including ionic metallomesogens) based oil the pyrrolidinium core are presented. N-Methylpyrrolidine was quaternized with different mesogenic groups connected to a flexible, omega-bromosubstituted alkyl spacer. The length of the flexible alkyl spacer between the cationic head group and the rigid mesogenic group was varied. The substituted pyrrolidinium cations were combined with bromide, bis(trifluoromethylsulfonyl)imide, tetrakis (2-thenoyltrifluoroacetonato)europate(III), and tetrabromouranyl anions. The influence of the type of mesogenic unit, the lengths of the flexible spacer and terminal alkyl chain, the size of the mesogenic group, and the type of anion oil the thermotropic mesomorphic behavior was investigated. Furthermore, the phase behavior was thoroughly compared with the previously reported mesomorphism of N-alkyl-N-methylpyrrolidinium salts. Low-ordered smectic A phases of the de Vries type, smectic C phases, higher-ordered smectic F/I phases, as well its crystal smectic phases (E and G, J, H, or K) were observed and investigated by polarizing optical microscopy, differential scanning calorimetry, and powder X-ray diffraction.
Resumo:
The alkali-metal salts of meta-substituted benzoic acids exhibit a smectic A mesophase at high temperatures. These compounds are examples of liquid crystals without terminal alkyl chains. The influence of the metal ion and of the type of substituents on the transition temperatures is discussed. Compounds with the substituent in the ortho- and para-positions are non-mesomorphic. The crystal structures of the compounds Rb(C7H4ClO2)(C7H4ClO2H), Na(C7H4IO2)(H2O), K(C7H4ClO2)(C7H4ClO2H) and Rb(C7H4BrO2)(C7H4BrO2H) have been determined by X-ray crystallography. These compounds possess a layerlike structure in the solid state. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
We report on chevrons (herringbonelike patterns) observed in homeotropically aligned liquid crystals with high electric conductivity. We focus our attention on two types of chevrons observed in the conduction regime. The threshold voltage and the characteristic double periodicity of chevrons (i.e., the short wavelength lambda(1) of the striated rolls and the long wavelength lambda(2) Of the chevron bands) have been measured as functions of the applied electric frequency f. With the aid of a crossed polarizer set, we have, in addition, determined the director field which shows a periodic in-plane rotation for our chevrons (with a wavelength lambda(2)) We arrived at the types of chevrons after qualitatively different bifurcation sequences with increasing voltage. The frequency dependence of lambda(2) also shows a qualitatively different behavior with respect to the two types of chevrons. The experimental results are discussed in terms of recent theoretical investigations.
Resumo:
The occurrence of the modulational instability in transverse dust lattice waves propagating in a one-dimensional dusty plasma crystal is investigated. The amplitude modulation mechanism, which is related to the intrinsic nonlinearity of the sheath electric field, is shown to destabilize the carrier wave under certain conditions, possibly leading to the formation of localized envelope excitations. Explicit expressions for the instability growth rate and threshold are presented and discussed. (C) 2004 American Institute of Physics.
Resumo:
The weakly nonlinear regime of transverse paramagnetic dust grain oscillations in dusty (complex) plasma crystals is discussed. The nonlinearity, which is related to the sheath electric/magnetic field(s) and to the intergrain (electrostatic/magnetic dipole) interactions, is shown to lead to the generation of phase harmonics and, in the case of propagating transverse dust-lattice modes, to the modulational instability of the carrier wave due to self-interaction. The stability profile depends explicitly on the form of the electric and magnetic fields in the plasma sheath. The long term evolution of the modulated wave packet, which is described by a nonlinear Schrodinger-type equation, may lead to propagating localized envelope structures whose exact forms are presented and discussed. Explicit suggestions for experimental investigations are put forward. (C) 2004 American Institute of Physics.