42 resultados para INTERNATIONAL CLASSIFICATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Microarray Innovations in Leukemia study assessed the clinical utility of gene expression profiling as a single test to subtype leukemias into conventional categories of myeloid and lymphoid malignancies. METHODS: The investigation was performed in 11 laboratories across three continents and included 3,334 patients. An exploratory retrospective stage I study was designed for biomarker discovery and generated whole-genome expression profiles from 2,143 patients with leukemias and myelodysplastic syndromes. The gene expression profiling-based diagnostic accuracy was further validated in a prospective second study stage of an independent cohort of 1,191 patients. RESULTS: On the basis of 2,096 samples, the stage I study achieved 92.2% classification accuracy for all 18 distinct classes investigated (median specificity of 99.7%). In a second cohort of 1,152 prospectively collected patients, a classification scheme reached 95.6% median sensitivity and 99.8% median specificity for 14 standard subtypes of acute leukemia (eight acute lymphoblastic leukemia and six acute myeloid leukemia classes, n = 693). In 29 (57%) of 51 discrepant cases, the microarray results had outperformed routine diagnostic methods. CONCLUSION: Gene expression profiling is a robust technology for the diagnosis of hematologic malignancies with high accuracy. It may complement current diagnostic algorithms and could offer a reliable platform for patients who lack access to today's state-of-the-art diagnostic work-up. Our comprehensive gene expression data set will be submitted to the public domain to foster research focusing on the molecular understanding of leukemias

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Color segmentation of images usually requires a manual selection and classification of samples to train the system. This paper presents an automatic system that performs these tasks without the need of a long training, providing a useful tool to detect and identify figures. In real situations, it is necessary to repeat the training process if light conditions change, or if, in the same scenario, the colors of the figures and the background may have changed, being useful a fast training method. A direct application of this method is the detection and identification of football players.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Smart management of maintenances has become fundamental in manufacturing environments in order to decrease downtime and costs associated with failures. Predictive Maintenance (PdM) systems based on Machine Learning (ML) techniques have the possibility with low added costs of drastically decrease failures-related expenses; given the increase of availability of data and capabilities of ML tools, PdM systems are becoming really popular, especially in semiconductor manufacturing. A PdM module based on Classification methods is presented here for the prediction of integral type faults that are related to machine usage and stress of equipment parts. The module has been applied to an important class of semiconductor processes, ion-implantation, for the prediction of ion-source tungsten filament breaks. The PdM has been tested on a real production dataset. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classification methods with embedded feature selection capability are very appealing for the analysis of complex processes since they allow the analysis of root causes even when the number of input variables is high. In this work, we investigate the performance of three techniques for classification within a Monte Carlo strategy with the aim of root cause analysis. We consider the naive bayes classifier and the logistic regression model with two different implementations for controlling model complexity, namely, a LASSO-like implementation with a L1 norm regularization and a fully Bayesian implementation of the logistic model, the so called relevance vector machine. Several challenges can arise when estimating such models mainly linked to the characteristics of the data: a large number of input variables, high correlation among subsets of variables, the situation where the number of variables is higher than the number of available data points and the case of unbalanced datasets. Using an ecological and a semiconductor manufacturing dataset, we show advantages and drawbacks of each method, highlighting the superior performance in term of classification accuracy for the relevance vector machine with respect to the other classifiers. Moreover, we show how the combination of the proposed techniques and the Monte Carlo approach can be used to get more robust insights into the problem under analysis when faced with challenging modelling conditions.