182 resultados para INHIBITION
Resumo:
Angiotensin converting enzyme inhibitors (ACEis) are widely used anti-hypertensive agents that are also reported to have positive effects on mood and cognition. The present study examined the influence of the ACEi, perindopril, on cognitive performance and anxiety measures in rats. Two groups of rats were treated orally for one week with the ACEi, perindopril, at doses of 0.1 and 1.0mg/kg/day. Learning was assessed by the reference memory task in the water maze, comparing treated to control rats. Over five training days both perindopril-treated groups learnt the location of the submerged platform in the water maze task significantly faster than control rats. A 60s probe trial on day 6 showed that the 1.0mg/kg/day group spent significantly longer time in the training quadrant than control rats. This improved performance in the swim maze task was not due to the effect of perindopril on motor activity or the anxiety levels of the rats as perindopril-treated and control animals behaved similarly in activity boxes and on the elevated+maze. These results confirm the anecdotal human studies that ACEis have a positive influence on cognition and provide possibilities for ACEis to be developed into therapies for memory loss.
Resumo:
Adrenomedullin may provide a compensatory mechanism to attenuate left ventricular hypertrophy (LVH). Nitric oxide synthase inhibition, induced by chronic administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) to rats, induces cardiac hypertrophy in some, but not all cases; there are few reports of direct assessment of cardiomyocyte parameters. The objective was to characterize hypertrophic parameters in left (LV) and right ventricular (RV) cardiomyocytes after administration of L-NAME to rats for 8 wk and to determine whether adrenomedullin and its receptor components were upregulated. After treatment with L-NAME (20 and 50 mg x kg(-1) x day(-1)), compared with nontreated animals, 1) systolic blood pressure increased (by 34.2 and 104.9 mmHg), 2) heart weight-to-body wt ratio increased 24.1% at the higher dose (P
Resumo:
The present study was undertaken to test whether inhibition of the proangiogenic inflammatory cytokine tumor necrosis factor (TNF)-alpha can modulate retinal hypoxia and preretinal neovascularization in a murine model of oxygen-induced retinopathy (OIR). OIR was produced in TNF-alpha-/- and wild-type (WT) control C57B6 neonatal mice by exposure to 75% oxygen between postnatal days 7 and 12 (P7 to P12). Half of each WT litter was treated with the cytokine inhibitor semapimod (formerly known as CNI-1493) (5 mg/kg) by daily intraperitoneal injection from the time of reintroduction to room air at P12 until P17. The extent of preretinal neovascularization and intraretinal revascularization was quantified by image analysis of retinal flat-mounts and retinal hypoxia correlated with vascularization by immunofluorescent localization of the hypoxia-sensitive drug pimonidazole (hypoxyprobe, HP). HP adducts were also characterized by Western analysis and quantified by competitive enzyme-linked immunosorbent assay. TNF-alpha-/- and WT mice showed a similar sensitivity to hyperoxia-induced retinal ischemia at P12. At P13 some delay in early reperfusion was evident in TNFalpha-/- and WT mice treated with semapimod. However, at P17 both these groups had significantly better vascular recovery with less ischemic/hypoxic retina and preretinal neovascularization compared to untreated retinopathy in WT mice. Immunohistochemistry showed deposition of HP in the avascular inner retina but not in areas underlying preretinal neovascularization, indicating that such aberrant vasculature can reduce retinal hypoxia. Inhibition of TNF-alpha significantly, improves vascular recovery within ischemic tissue and reduces pathological neovascularization in OIR. HP provides a useful tool for mapping and quantifying tissue hypoxia in experimental ischemic retinopathy.
Resumo:
The N-terminal propeptide domains of several cathepsin L-like cysteine proteases have been shown to possess potent inhibitory activity. Here we report the first kinetic characterisation of the inhibition properties of the cathepsin V propeptide (CatV PP). Using a facile recombinant approach we demonstrate expression, purification and evaluation of the CatV PP. This propeptide was found to behave as a tight-binding inhibitor against CatV (K (i) 10.2 nm). It also functions as an inhibitor against other members of the CatL-like subclass (CatL, 9.8 nm; CatS, 10.7 nm; and CatK, 149 nm) and had no discernible effects upon the more distantly related CatB.